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Abstract-In order to deduce the vertical structure of doubly-diffusive convection cells in magma
chambers, solutions to the horizontally-averaged conservation equations governing the distribution
of temperature, composition and velocity in a two component (rhyolite-basalt) Newtonian melt have
been obtained. Boundary conditions were chosen to model a chamber with a hot, dense (basaltic)
base, overlain by cooler more silicic magma, where the influences of sidewall cooling, crystallization
and melting are not considered. Parameters of the problem are: the Lewis number, a ratio of thermal
to compositional diffusivities (Le == K/D); the Prandtl number, a ratio of viscosity to thermal diffusivity
(Pr ee V/K); the Rayleigh number, a ratio of thermal buoyancy to viscous forces (Ra ea agd3l1TjKv,
where a is thermal expansivity, d is the magma chamber depth and I1T the temperature dif-
ference across the chamber); the buoyancy ratio, a ratio of compositional to thermal buoyancy
(Rp == acI1C/aI1T, where ac is compositional expansivity and I1Cthe compositional difference across
the chamber); the ratio of maximum to minimum magma viscosities (A) and the wavenumber of
convection (k).

Steady state solutions have been obtained for values of these parameters in the range appropriate
to magma chambers and include the effects of a strongly temperature-<iependent viscosity. Calculations
show that a critical Lewis number (Leerit) separates steady single-cell convection from unsteady con-
vection and conduction. For isoviscous convection at a wavenumber k = 7r and for Le > Leerit = 6.7
Ra-O.12RpI.67, single-layer convection cells characterized by thin chemical and thermal boundary
layers and well-mixed interiors develop. Magma chambers lie above this critical Lewis number and,
therefore, steady-state model magma chambers exhibit single cell convection. When a temperature
dependent viscosity is assumed, the style of convection is not qualitatively different. Steady state
values of the heat flux through the chamber roof and the flux of light component downward are
given by q = 0.4kTI1Td-1 RaO.23Le0.oJRpo.olAO.10 andj = 0.4KI1Cd-1 RaO.23Le-{!·6sRp°.oJAo.os,respectively,
where kT is the thermal conductivity. Calculated heat flow values in the range 2000 to 20000
mW/m2 compare favorably with measurements in active geothermal areas. Redistribution times for
major elements by advective-diffusive transport are in the range 105 to 106years. These redistribution
rates indicate effective eddy diffusivities 105 to 106 times larger than Fickian chemical diffusivities.
Maximum convection velocities are given by W = 0.1OKd-1 Ra°.62, which implies maximum velocities
in the range I to 102 krn/year (far greater than crystal settling rates) for typical chambers. Crystal
settling is therefore restricted to the chamber margins where convective velocities are much smaller.
A difference in steady-state behavior is observed as the Prandtl number is lowered below twenty. It
is suggested that effects of inertia can cause differences in the dynamic behaviour of double-diffusive
convection.

For convection cell aspect ratios greater than about 3 (i.e., cell 3 times deeper than wide) two
steady state solutions are found. The solution corresponding to a high heat flux is a single layer
(whole chamber) convection cell whereas the low heat flow solution consists of two vertically stacked
convection cells separated by a thin diffusive interface. Similar layers are found in thermal convection
experiments performed at high wavenumbers. Such layering must therefore be due to chamber ge-
ometry and not the influence of compositional buoyancy.

INTRODUCTION base, a basaltic top and a thin (-2 m) mixed zone
interior (SCHMINCKE,1969; CRISP, 1984; CRISPand

NUMEROUS STRATIGRAPHICSTUDIESof individual SPERA, 1986). Similarly, at Crater Lake, Oregon,
pyroclastic flow deposits over the past 50 years have USA, WILLIAMS (1942) described "the eruption of
revealed the presence of discrete compositional gaps two magma types in rapid succession", a 66-69
in major, minor and trace elements (e.g., WILLIAMS, weight percent Si02 dacitic and a 54-57 weight per-
1942; TSUYA, 1955; SMITH, 1960; LIPMAN, 1967; cent basic magma (see also BACON, 1983). In ad-
HILDRETH, 1981). For example, a 30 m thick ash dition to cases where compositional gaps occur in
flow tuff has been described from Gran Canaria, vertical stratigraphic sections, many examples of
that consists of a single cooling unit with a rhyolitic mixed-pumice eruptions have been described (e.g.,
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SMITH,1979;HILDRETH,1981).In a mixed-pumice
pyroclastic flow, two or more compositionally dis-
tinct magma types are simultaneously erupted from
a single vent.

The mechanism(s) for generation of composi-
tional gaps in ash flow deposits are not clear. Re-
cently it has been shown that significant variations
in discharge rate during an eruption can produce
compositional gaps in deposits even if the in situ
(pre-eruptive) chemical gradient is linear (GREER,
1986;SPERAet al., 1986a). That is, a compositional
gap could be an artifact of the hydrodynamics of
magma withdrawal. On the other hand, it has been
suggested that layering may be the product of dou-
ble-diffusive convection within magma chambers
(McBIRNEY, 1980; TURNER, 1980; RICE, 1981;
HUPPERTand SPARKS,1984). Two distinct models
for magma chamber convection are illustrated in
Figure 1.Double-diffusive convection exists when
two scalars of differing molecular diffusivities, such
as temperature and composition, contribute to the
buoyancy of the fluid in opposing directions. Two
types of double-diffusive convection may be dis-
tinguished. The first occurs when the fast diffusing
'component' (i.e., heat) has an unstable distribution
and is called the "diffusive regime". Layered con-
vection may develop in this regime (Figure 1).The
second regime occurs when the slow diffusing com-
ponent has an unstable distribution. This regime is
called the "finger regime" and is discussed at length
by SCHMITT(1979, 1983) and PiASEKand TOOMRE
(1980). In a crustal magma chamber, dense hot basic
magma commonly underlies cooler silicic magma.
Heat diffuses much faster than any chemical com-
ponent in magmatic liquids, and, therefore, magma
chambers are commonly in the "diffusive regime".
The finger regime may also be relevant to magma
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FIG. I. Schematic depiction of (a) layered convection
and (b) single-cell convection in a large volume magma
chamber. In (a) distinct well-mixed and nearly isothermal
regions are separated by thin diffusive interfaces charac-
terized by steep gradients of composition and temperature.
Case (b) represents single-cell convection occupying the
whole magma chamber. The main body of the chamber
is chemically homogeneous and isothermal. The only
chemical and thermal zonation is restricted to thin
boundary layers surrounding the chamber.

chamber evolution. For instance, in a closed system
chamber (i.e., no replenishment) where crystalli-
zation can produce an iron-enriched liquid, a rel-
atively dense iron-rich melt can come to lie above
a cold stagnant bottom boundary layer (JAUPART
et al., 1984; BRANDEISand JAUPART,1986). In this
paper, attention is focused on the diffusive regime
because it is most relevant to the origin of com-
positional layering in pyroclastic flows. Exhumed
layered intrusions, such as the Stillwater Complex
in Montana, USA, present difficulties in interpre-
tation because of the drastic compositional effects
imposed by magma crystallization. Pyroclastic
flows, on the other hand, are melt dominated often
containing only 5 to 10volume percent phenocrysts.

Previous work on double-diffusive convection
(or more generally multiple-component convec-
tion) includes analytic, experimental and numerical
studies (e.g., VERONIS,1965; BAINESand GILL,
1969; PROCTOR,1981; KNOBLOCHand PROCTOR,
1981; DA COSTAet al., 1981; CHENand TURNER,
1980; TURNER, 1980; NEWELL,1984; VERONIS,
1968; ELDER,1969; HUPPERTand MOORE,1976;
GOUGHand TOOMRE,1982; MOOREet al., 1983;
KNOBLOCHet al., 1986). The recent summaries by
CHENand JOHNSON(1984) and especially TURNER
(1985) provide comprehensive surveys of multi-
component convection from both historical and
modem viewpoints.

The aim of this work is to carry out numerical
experiments under a set of conditions applicable to
magma chambers with the hope of discovering the
nature of double-diffusive convection there. Of
particular relevance to volcanologists and geo-
chemists is the question of whether or not layered
convection exists in magma reservoirs from which
pyroclastic flows are erupted. In the present work,
attention is focused on possible steady-state layered
chambers. The details of flow development will be
discussed later. The nature of multicomponent
convection in the steady state is the logical starting
point for any future studies aimed at the transient
behavior of convection in magma reservoirs. A
similar approach was taken by mantle convection
workers who studied steady state solutions (TUR-
COTTEand OXBURGH,1967) long before time-de-
pendent solutions (MCKENZIEet al., 1974). The
present paper is an amplification of the preliminary
study by SPERAet al. (l986b).

ANALYSIS

Mean field approximation

The equations that govern the form of the ve-
locity, temperature and compositional fieldswithin
a convecting magma body include the conservation
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of mass, linear momentum, energy and composi-
tion. Magma is treated as a binary fluid composed
of a silicic (light) component and a complementary
mafic (dense) component. The chemical properties
ofthe light component enter into the equations only
in terms of its molecular diffusivity (D) and a ther-
modynamic parameter (ac) analogous to the iso-
thermal expansivity. The aSi02 and aH20 in inter-
mediate composition melts are roughly 0.3 and 2
respectively. Values of ac are listed in Table 1.

In this study the single-mode mean field method
has been utilized (HERRING,1963). This method is
able to exhibit both the basic physics of the con-
vection and also the scaling relations between
quantities such as heat flux and vigor of convection.
This approach basically entails the a priori pre-
scription of the size and form of the convection
cells. This allows horizontal averaging of quantities
such as velocity, and hence the dimensionality of
the problem is reduced to one dimension; depth.
In comparison with two-dimensional (2-D) meth-
ods the mean fieldapproach is considerably cheaper;
because of this it is possible to perform many ex-
periments over a range of difficult conditions. We
regard the mean field method as a reconnaissance
tool which enables a better interpretation of two-
dimensional (2-D) numerical simulations (OLD-
ENBURGet al., 1985, HANSENand YUEN, 1985,
HANSEN,1986). This consideration is a primary
motivation for the present study.

Calculations for the case of constant viscosity
convection by QUARENIand YUEN (1984) have
found good agreement between mean-field and 2-

Table I.Calculated values for the coefficient of isothermal
chemical expansivity*

Basaltic Rhyolitic
Magma Magma

Si02 +0.41 +0.22
Ti02 -0.30 -0.43
Ah03 -0.05 -0.08
Fe203 -0.28 -0.39
FeO -0.62 -0.68
MnO -0.47 -0.54
MgO -0.20 -0.32
CaO -0.21 -0.33
Na20 +0.25 +0.01
K20 +0.26 +0.05
H2O +3.00 +2.00

* Calculated from BOTTINGAet al. (1982). Reference
density and temperature for basalt and rhyolite are 1200°C,
2.6738 g/cm! and 900°C, 2.2781 g/cm ' respectively. Val-
ues for water derived from BURNHAMand DAVIS(1971).
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D results in both steady-state and time dependent
situations. For variable viscosity thermal convec-
tion, an extensive study (QUARENIet al., 1985), in-
volving both temperature- and pressure-dependent
rheologies, gave further support to the usage of the
mean field for the purpose of obtaining scaling re-
lations. For example the power-law exponents re-
lating heat flux and the vigor of convection differ
by at most 10%between mean field and 2-D meth-
ods. The recent findings of P. OLSON(1986) dem-
onstrate the relationship between mean field, 2-D
and boundary layer predictions. The essential fea-
tures of the dependence of boundary-layer thick-
nesses upon the strength of convection is captured
by both mean field and 2-D methods. More im-
portant is the finding that the 2-D results lie be-
tween those of the mean field and boundary-layer
methods when heat transfer or boundary layer
thicknesses are compared. Furthermore the ability
of the mean field method to resolve internal inter-
faces is clearly demonstrated by the prediction of
layered thermal convection in narrow slots. Such
convection was also found in the experimental study
of J. M. OLSONand ROSENBERGER(1979).

When comparing two- and three-dimensional
(3-D) studies workers (LIPPS and SOMERVILLE,
1971, and MCKENZIEet al., 1974) have noted dis-
crepancies. These discrepancies result from the fact
that in a full 3-D model the convective planform
wavelength is dependent on the vigor of convection,
as measured by the Rayleigh number. If this de-
pendence is known, and used in 2-D and mean
field simulations, good results are obtained; fre-
quently, however, it is not known. In our numerical
experiments planform wavelength is fixed a priori.
An estimate of the error incurred by this procedure
can be obtained by performing a set of numerical
experiments over a range of wavelengths. It is shown
later that the error introduced is at most a factor of
two in terms of predicted heat fluxes, convection
rates and boundary layer thicknesses.

The inherent limitations of the mean-field ap-
proximation are overshadowed by our immense ig-
norance concerning the most basic features of
magma chambers. For example geological and geo-
physical constraints on magma chamber geometries
are meager (IYER, 1984), as are data on relevant
rates of heat and mass transfer along chamber-
country rock contacts. Furthermore, it is an exper-
imental fact that magma is a rheologically complex
fluid (SHAW,1969; SPERAet al., 1982; MURASEet
al., 1985) with a constitutive relation that changes
as crystals nucleate and grow. In view of this in-
complete understanding, we have chosen a canon-
ical set of magma chamber properties. In particular
we study large chambers heated from below, where
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the influence of sidewall cooling can be neglected.
The role of various sidewall boundary conditions
has been previously examined (e.g., SPERA et al.,
1982; LOWELL, 1985; SPERA et al., 1984; NILSON
et al., 1985; NILSON and BAER, 1982).

Conservation equations

The mean field equations are derived from the
two-dimensional equations of conservation of mo-
mentum, energy and composition. Following VE-
RONIS (1968) the Boussinesq equation of motion
is,

(
a ) -1 1-+v·V v=-Vp+g(aT+acC)f+-V·T, (1)
& p p

conservation of mass is,

V· v = 0,

conservation of energy is,

and the conservation of composition is,

(*'+ v· v)c= DV2C.

In these equations t is time, v[v(u, v, w)] velocity,
p the mean density, p is pressure, T is temperature,
C is the concentration of the light component in
the binary magma, K is the thermal diffusivity, and
D is the chemical diffusivity ofthe light component.
[is the unit vector in the Z (downward vertical)
direction. The viscous stress tensor, T, for a New-
tonian fluid is given by:

where the viscosity, 1/, is given by:

1/(T)= 1/0 exp(-AT),

where A is a constant and 1/0 is a reference viscosity.
T is a dimensionless temperature and is defined
shortly. The coefficients of thermal expansion and
its analogous compositional counterpart are given
by:

-1 (ap) -1(ap)a=- - and ac=- - . (7)
p aT C,p p ac T,p

Equations (1-4) are made dimensionless by choos-
ing Z = Z/d,7 = txld", jj = pd2/pVK, T = (T - To)/
t).T and C = (C - C1)/t).Cwhere d is the depth of
the chamber, To, T1, Co and C1 the temperature
and mass fraction of light component at the top

and bottom of the chamber, respectively and t).T
= T, - To and t).C = Co - C1•

Following the work of HERRING (1963, 1964),
GOUGH et a!. (1975) and TOOMRE et a!. (1977), the
single-mode mean field approximation is used to
simplify Equations (1) through (4). The dimension-
less vertical velocity (w), temperature (T) and com-
position (C) are decomposed according to:

w = W(Z,7)f(X, Y)

T= T(Z,7)+()(Z,t)f(X, n
C=C(Z,t) +</J(Z,t)f(X,Y).

(8a)

(8b)

(8c)

(2)

The first term in Equations (8b) and (8c) is a non-
fluctuating component which varies solely in Z and
7. This non-fluctuating component is the horizontal
average of the quantity. In an arrangement of con-
vection cells in which there are as many upwelling
as downwelling plumes the horizontal average of w
is zero and those of T and C non-zero. The second
component is the fluctuating component. This
component has a magnitude, which is solely a
function of Z and 7, and which is multiplied by the
periodic functionf(X, Y). This function represents
the convective planform and wavelength. In the case
of convection cells in the form of infinitely long
rolls f(X, Y) has the form cos kX. The reader is
referred to SEGALand STUART (1962) and GOUGH
et a!. (1975) for further discussion of the form of
fiX, n.The velocity vector, v, has the components:

(3)

(4)

v=_!_ af aw 1 af aw
k2aX ez: k2ay az J(X, Y)W(Z,t), (8d)

(5)

in terms of the mean field formulation. In Equation
(8d) and subsequent expressions all parameters are
dimensionless unless otherwise stated and tildes
have been dropped from the mean quantities W, T
and C.

The equation of motion becomes:

(6)
1 (a) F- --D DW+-(2W'DW+ WDW')
Pr at Pr

2 '( " )+ : W"'_k2W'+~ W"+k2W

= -k2(Ra() +Rc</J), (9)

the mean thermal and mean compositional equa-
tions are:

aT + (W()' = T"
at

(10)

ac
-+Le (W</J)'= C"
at

(11)
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equations are:
and the fluctuating thermal and compositional Configuration and boundary conditions

(~-D)8+F(2W8'+8W')= -T'W

(~-D)8+F(2W¢'+¢W')= -Le CW.

The operator D used here is defined as:

In the above equations, a prime indicates partial
differentiation with respect to Z. Five dimensionless
numbers occur in this set of equations including
the Prandtl number (Pr), the Lewis number (Le),
the thermal Rayleigh number (Ra), the composi-
tional Rayleigh number (Rc), and the viscosity ratio
(A) (see Table 2). The kinematic viscosity (vo) is
defined according to Vo = TJo/p. The Prandtl and
Lewis numbers are the ratios of diffusivities and
therefore depend solely on magma properties. The
two Rayleigh numbers also depend on the external
parameters ofthe problem, namely the depth of the
chamber and the compositional and temperature
contrasts across it. It is also convenient to define
the buoyancy ratio Rp == Rc/Ra = acD.C/ aD.T. The
other parameters are k, the horizontal wavenumber
and F, a planform constant, which is related toI(X,
Y). For rolls and rectangular glanforms F = 0
whereas for hexagons F = I/V6 (GOUGH et al.,
1975). k is related to the cell aspect ratio, a (width
to depth), by k = «[a.

The magma chamber is considered to be infinite
in the horizontal direction and bounded, top and

(12) bottom, by no-slip horizontal surfaces which have
fixed temperature and composition. The no-slip
condition at the boundaries (u = w = 0) implies

(13) that both Wand W' are zero. We choose to model
a chamber of cool, light silicic magma underlain by
hotter, denser mafic magma. These boundary con-
ditions are:

(14) W=W'=T=8=C-l=¢

=0 at Z=O (top) and

W = W' = T - 1= 8= C = ¢ = 0 at Z = 1 (base)

where C represents the mass fraction of the light
silicic component. This configuration is that of
classical Rayleigh-Bernard convection and as such
takes no account of the effects at sidewalls.
It should be noted that the specification of T and

C at the boundaries implies an unknown flux of
heat and composition respectively. The boundaries
ofthe chamber can be considered as infinite thermal
and compositional reservoirs. The two implied
fluxes are an output of the model and can be tested
against geological observations. Alternatively, one
could specify the gradients of T or C, or both, at
the boundaries and solve for the distribution of T
and C.

The model also requires specification of a plan-
form and wavelength. Our experiments have been
carried out for hexagonal, roll and rectangular
planforms. The majority of the experiments have
been performed at a wavenumber of 7r. The 7r is

Table 2. Important dimensionless numbers

Magma chamber
Dimensionless number Value range

-
Prandtl Number Pr V/K 104_108 Ratio of viscosity to thermal

diffusi vity

Lewis Number Le K/D 104_1013 Ratio of thermal to
compositional diffusivity

Rayleigh Number Ra agd311T/KV 109_1017 Ratio of thermal buoyancy
to viscous forces

Compositional Rayleigh Number Rc acgd311Cj KV SeeRp Ratio of compositional
buoyancy to viscous forces

Buoyancy Ratio Rp acl1C/al1T 0-100 Ratio of Rc to Ra

Viscosity Contrast A eA 1_108 Ratio of maximum to
minimum magma
chamber viscosities
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close to the critical wave number for the onset of
convection as described by linear stability analysis
(BAINESand GILL,1969;VERONIS,1965).However,
a series of experiments was conducted in which k
was varied extensively.

The computer program employed an adaptive
finite difference grid with up to 400 points to solve
discretized versions of Equations (9-13) (PER-
EYRA,1978). In cases where a single steady state
solution exists this solution can be arrived at re-
gardless of initial profiles.

RESULTS

Isoviscous, steady-state, infinite Prandtl number
convection

When Equation (9) is rewritten for infinite
Prandtl number, constant viscosity, steady state
convection it becomes much simpler. Additionally,
if we choose to model convection rolls or a rect-
angular convection planform, Equations (12) and
(13) lose their dependence on the planform constant
(F). It is noted that in the infinite Prandtl number
case the momentum equation has no dependence
on F. The work here was carried out at a wavenum-
ber (k) of 7r. After having made these assumptions,
the principle variables in the problem are the Lewis
number and the compositional and thermal Ray-
leigh numbers. Given these parameters one solves
for W, T, 0, C and r/> as functions of Z, depth in the
chamber. In this work three kinds of results can be
distinguished.

(1) For low Rayleigh numbers the steady state
solution to the problem is a conductive solution.
In this case W, 0 and r/> are all zero, T = Z and C
= 1 - Z.
(2) A second class of results is characterized by

the lack of a solution to the steady state problem.
HUPPERTand MOORE(1976) noted the existence
of oscillatory and aperiodic solutions to the double-
diffusive convection equations for certain condi-
tions. There have been many studies of simplified
versions of the equations governing the time de-
pendence of double-diffusive convection. These
studies (KNOBLOCHand PROCTOR, 1981; DA
COSTAet al., 1981;MOOREet al., 1983;KNOBLOCH
et al., 1986; GOLLUBand BENSON,1980) have in-
trinsic relevance to the fluid dynamics of turbulence
and chaos, and to bifurcation theory.

(3) The third class of results is that ofa convec-
tive steady state. All such solutions have a velocity
profile with depth that has just one maximum.
These are single convection cells. Figure 2 shows
the W, T, 8, C and r/> profiles as an example of this
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0.00.1 0.3 0.5 0.7 0.9 1.0

FIG. 2. Representative fields of T, C, W, 8, and </> for
steady, single-layer, isoviscous, doubly-diffusive systems.
Parameters are Le = 300, Ra = 107

, Rp = 25, k = 7r and
Pr -+ 00. (a) Mean temperature (T), mean composition
(C) and normalized velocity (W/Wo). Wo = 1190. Com-
puted Nusselt numbers are NUT= 12.5 and Nile = 70.9.
(b) fluctuating temperature (8/80) and composition (</>1<1>0)
for same parameters as (a). 80 = 0.167 and </>0 = 0.456.

class of solutions. The temperature and composition
profiles are both characterized by thin boundary
layers and isothermal/isochemical cores in the cen-
ter of the cell. From these solutions, one can cal-
culate rates of heat transfer and chemical transport
and investigate the dependence of these rates on
Le, Ra and Rp.

Steady state, isoviscous, infinite Prandtl number
numerical experiments have been conducted over
the range 1 ~ Le ~ 106, 103 ~ Ra ~ 1010,0 ~ Rp
~ 40 and k = 7r. One of the important contributions
of this study is the mapping in Le-Rp-Ra space of
the region of steady state solutions. The results of
almost 300 experiments are displayed in Figure 3.
Two fields are distinguished in this figure. The up-
permost field is that region of parameter space
characterized by the class (3), steady convective so-
lutions. In all cases these solutions are single-layer
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FIG. 3. Regime diagram in the Le-Ra plane separating
regions of steady, single-layer, isoviscous roll convection
from those characterized by either unsteady convection
or conduction profiles (k = 7r). At given Rp, Le-Ra values
above the curve lead to steady, single-layer solutions
characterized by thin thermal and very thin chemical
boundary layers. Note that virtually all magma reservoirs
with Ra > 1010and Le > 104 will be in the steady, single-
layer mode even at quite large ratios of chemical to thermal
buoyancy (Rp).

convective cells. The lowermost field is made up of
both the class (1), conductive, and class (2), un-
steady, solutions. A critical Lewis number is defined
above for which all solutions are steady convective
solutions. Itisimportantto notethatthiscriticalLewis
number decreases as the Rayleigh number increases.
This is important because magma chambers typi-
cally have Rayleigh numbers in excess of 109• The
critical Lewis number, as determined by a least-
squares fit to the data, is given by:

Leerit=6.7 Ra-o.12Rp5/3. (15)

The uncertainty in the exponents of this power-
law relationship does not exceed ± 10%.

Fluxes

The vigor of convection can be measured by the
rate at which heat is transferred. The Nusselt num-
ber is the ratio of the total heat flux to that which
would be carried by conduction alone given the im-
posed 11T. Nusselt numbers of unity indicate pure
conduction. In the mean field formulation the ther-
mal Nusselt number (NUT)and the analogous com-
positional Nusselt number (Nuc) are calculated by:

aT
NUT= az - WO,

and

Nuc = -(:~ - Le (WO»).

Thermal Nusselt numbers have been calculated
for all of the steady convective solutions [class (3)]
and these data are plotted on Figure 4. Figure 4a
shows the relationship between NUTand Ra. It is
seen that at high Rayleigh numbers (i.e., >106) the
relationship is linear in log-log space. When plotted
against Lewis number (Figure 4b) it can be seen
that for high Lewis numbers the thermal Nusselt
number is almost independent of Lewis number.
This relationship holds so long as Le/Leeritis greater
than 10. The Leentis the critical Lewis number for
steady convection and given by Equation (15).
Thermal Nusselt number is plotted in Figure (4c)
versus Ro. When Le/Leerit> 10, thermal Nusselt
number is almost independent of Rp,

In conclusion, note that NUThas little depen-
dence on either Le or Rp, Results of multivariate
linear regression are included in Table 3. A sim-
plified equation derived from these results is:

(18)

The uncertainty in the coefficients in Equation (18)
and in similar parameterized expressions that follow
is about 5%. Physically, this relationship implies
that in multicomponent convection heat transport
is not affected by the compositional buoyancy of a
slow diffusing chemical species. Heat transport is
affected only by the magnitude of the thermal driv-
ing force and the viscous resistance.

The relationship between heat flux and Rayleigh
number can be compared with previous 2-D ther-
mal convection studies. The power-law exponent
deduced by the asymptotic solutions of ROBERTS
(1979) is 0.2. From the work of LIPPSand SOMER-
VILLE(1971) at Pr = 200, ROBERTS(1979) calcu-
lated the value of the multiplicative coefficient to
be 0.426. QUARENIand YUEN(1984) calculated a
power law exponent of 0.25. The values of the ex-
ponents and coefficients for thermal convection are
in reasonable agreement.

In an analogous manner compositional Nusselt
numbers have been calculated for the steady con-
vective solutions (Figure 5). Figure 5a indicates a
similar relationship to Equation (18) for dependence
on Ra. However, the compositional Nusselt number
depends also upon the Lewis number (Figure 5b),
the power law exponent being about 0.35. Com-
positional Nusselt number is plotted versus Rp in
Figure 5c.We deduce the following relationship (see
also Table 3):

(16) Nuc = 0.39 Rao.23 Leo.35. (19)

(17)
The downward flux oflight silicic material depends
on both the thermal driving force of the convection
and on the ratio of thermal and compositional dif-
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Double-diffusive convection 297

Numerical coefficient

Table 3. Multiple linear regression results for Equations (18) and (19).

Rp exponentRa exponent Le exponent

Thermal Nusselt
Number Equation
(18)

Compositional Nusselt
Number Equation
(19)

0.417 ± 0.011

0.387 ± 0.010

0.229 ± 0.00 I 0.008 ± 0.002 0.009 ± 0.002

0.225 ± 0.00 I 0.345 ± 0.002 0.010 ± 0.002

Correlations include 38 runs and cover the range 105 « Ra « 109,20 « Le « 104 and 0.01 « Rp « 40.

fusivities. It does not depend on the magnitude of
the compositional driving force.

The parameterizations which follow, in addition
to the two above, are made for the asymptotic por-
tions of the dataset. These parameterizations there-
fore imply conditions far into the convective regime,
i.e., (high Lewis and Rayleigh numbers) Le/Lecrit
> 10 and Ra;;. 106•

Velocity

Figure 6 shows the relationship between maxi-
mum dimensionless velocity (Wma,) and Rayleigh
number (Ra). At conditions away from the critical
parameters for class (3) solutions, the velocity is
solely dependent upon thermal Rayleigh number.
The following relationship has been deduced from
the numerical experiments:

W = 0.09 Rao.62•

Again comparison can be made to previous ther-
mal convection studies. ROBERTS (1979) found a
power-law relationship between Rayleigh number
and velocity with an exponent of 0.6. Our results
are quite close to this exponent.

Boundary layer thicknesses

The convection cells have narrow thermal and
compositional boundary layers of thickness, Or, and,
oc, respectively. The boundary layer thicknesses are
defined by the region in which 95% of the variation
in temperature or composition, in one half of the
convection cell, takes place. The OT and Oc vary
inversely with NUT and NUc respectively. It is found
that

and,
Oc =O.77d Ra-o.23 Le-O.35.

Note that the ratio of OT/OC is given by:

OT °- = 0.85 Le .35
oe

Finite Prandtl number solutions

(20)

A series of numerical experiments was conducted
for finite Prandtl number assuming a hexagonal
convective planform. Figure 7 shows the variation
in thermal Nusselt number as Prandtl number is
decreased. There is no dependence ofthermal Nus-
selt number on Prandtl number for values of Pr
> 102• For Pr < 102 the thermal Nusselt number
begins to rise quite sharply, indicating increased
vigor of convection. Physically, this situation cor-
responds to an increasing importance of the inertial
terms in the momentum equation. Laboratory
double-diffusion experiments have been conducted
for fluids with Prandtl numbers less than 10. Ex-
trapolation of these laboratory experiments to
magma conditions, for which Prandtl numbers ex-
ceed 102, may be problematical. Future laboratory
or numerical experiments are warranted to shed
light on this important point.

Effect of wavenumber

The effect of wavenumber on the style of con-
vection has been extensively studied in this work
for the conditions Ra = 106, Le = 500, Ro = 5, Pr

105

(21)

(22)

(23)
FIG. 6. Log-linear relationship between the maximum

velocity, Wmax, and Ra with slope 0.62. Parameters are
Le = 1000, Rp = 10 and k = 7r.
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Fro. 7. Variation of thermal Nusselt number, NUT with
Prandtl number, Pro There is no dependence on Pr for Pr
> 103. The other parameters are Le = 100, Ro = 10, Ra
= 105 and k = 7r and the planform chosen is hexagonal.
Solutions for Pr < 15 are non-convergent. Note asymptotic
limit for Pr > 100.

= 00, and 1 ~ k ~ 28 (Figure 8). For k > 10 two
branches of steady state solution are found.

The upper branch has a maximum thermal Nus-
selt number (Nurnx)of 12.8 at wavenumber of 12.
This branch of solutions is made up of single con-
vection cells like those illustrated in Figure 2. No
solution along this branch could be found for k
> 24. The lower branch of solutions extends from
k = 10 to k = 20. The solutions along this branch
have thermal Nusselt numbers which are roughly
half those on the upper branch. The form of these

10

5

o .
0.00 8.00 16.00 24.00

k
Fro. 8. Variation of thermal Nusselt number, NUT, with

wavenumber, k, for Le = 500, Rp = 5, Ra = 106• For k
;;.0 10, two sets of solutions can be obtained. The lower
branch is a branch of steady double-layer convection cells.
The upper branch is one of steady single-layer convection
cells.
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Fro. 9. Representative fields of T, C, W, 0, and </> for
steady, two-layer, isoviscous, doubly-diffusive systems at
high wavenumber. Parameters are Le = 500, Ra = 106,
Rp = 5, k = 12 and Pr .... 00. (a) Mean temperature (T)
and mean composition (C) plotted versus depth in the
chamber (Z). Computed Nusselt numbers are NUT = 6.793
and NUc = 79.473. (b) Normalized velocity (W/Wo) (curve
W), fluctuating temperature (0/00) (curve 0) and compo-
sition (</>1</>0) (curve </» versus depth (Z). Wo = 186, 00
= 0.105 and </>0 = 0.021.

solutions is illustrated in Figure 9. Two vertically
stacked convecting layers are separated by a sta-
tionary diffusing interface.

The following remarks can be made about these
results.

(1) In caseswhere two steady state solutions have
been found for a fixed set of parameters, the initial
profiles determine whether a single or double layer
solution is found.

(2) The effect of wavenumber on mean field
thermal convection has been studied by TOOMRE
et al. (1977) and QUARENI and YUEN (1984). Both
groups found only single layer solutions. In the
present work, pure thermal convection runs were
performed for Ra = 106, Pr = 00 and 1 ~ k ~ 24.
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The steady state calculation produced single layer
results over all of this range given (Iinit = 4>init = 0.01
Sinxz. If, however, the double-layer (I profile from
the runs described above was used as the initial guess
for the thermal convection case, a fully converged
two-layer solution would be found in the range 8
~ k < 20. The laboratory experiments of J. M.OL-
SONand ROSENBERGER(1979) reported multi-layer
configurations for thermal convection in narrow
enclosures. Our mean-field predictions for thermal
convection are in good agreement with these ex-
periments and are displayed in Figure 10.

(3) Solutions for k ~ 20 in the thermal and dou-
ble diffusive cases along double and single layer so-
lution branches all show non-isothermal cores in
convection cells. Composition (in the double dif-
fusive case) still remains isochemical.

(4) TOOMREet al. (1977) note that there is no
logical reason for choosing an appropriate wave-
length for convection within the mean field for-
mulation. They compared the results of physical
experiments to their work and found that the Nus-
selt number obtained in experiments was typically
less than the maximum, Nurnx• This conclusion
leaves two choices of wavenumber. TOOMREet al.
(1977) suggest that the lower of these two wave-
lengths is the appropriate one to model convection.
They find that numerical modelling of higher
wavelengths leads to profiles, such as in (3) above,
which are not seen in laboratory experiments. Over
the range 106 < Ra < 108 they find that the value

15
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o
0.00 8.00 16.00
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FIG. 10. Variation of thermal Nusselt number, NUT,
with wavenumber, k, for purely thermal convection and
Ra = 106. For k ~ 8 two sets of solutions can be obtained.
The upper branch (single layer) can be continued to lower
wavenumbers, whereas the lower branch (double layer)
cannot.
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of wavenumber (k) that compares best with exper-
imental data lies in the range 1.5 < k < 3.

In modelling steady state double-diffusive con-
vection we have fewer relevant physical experiments
with which to compare our data. However, as is
illustrated in the above, the qualitative similarity
between thermal and double-diffusive convection,
with respect to wavenumber, is very strong. On this
basis we feel the choice of k = 7r made for the ma-
jority of steady state double-diffusive convection
runs is an appropriate one.

Effect of variable viscosity

A series of numerical experiments in which vis-
cosity varied as a function of temperature was per-
formed. In Equation (9) this condition results in
non-zero values for those terms containing spatial
derivatives of viscosity. This result complicates the
solution of the momentum equation. In this work
we follow QUARENIet a!. (1985) and make the sub-
stitution:

d
3
W 1 dn (d2W )

Y= dZ3 +;az dZ2 +k2W .

Then for infinite Prandtl number Equation (9)
becomes:

(24)

dY+!d7](Y_3k2dW _2k2d
2
W)+k4W

dZ 7]dZ ez ez:

=k?
=-(RaO+Rc4». (25)

7]

The conditions over which viscosity is included
as a variable are 1 ~ Rp ~ 10, 1 ~ Le ~ 100, 104
~ Ra ~ 107and Pr = 00. The parameter A [equation
(6)] is positive in all numerical experiments; there-
fore, viscosity never exceeds the reference viscosity
(7]0). The ratio of maximum and minimum viscos-
ities in the chamber is given by A = e': The greatest
value of A in these experiments was about 600.

Figure 11presents a comparison between results
with A = 1 and A - 25 for Rp = 5, Ra = 106, Le
= 100 and k = 7r. High A leads to a higher average
velocity in the chamber. This conclusion is a direct
consequence of the lowered viscosityas temperature
increases away from the upper boundary. The ve-
locity field also becomes asymmetric as A increases.
Slower velocities are present in the upper cooler
boundary layer. In the upper boundary layer, dif-
fusional transport is more important, relative to
advection, than it is at the lower boundary. For this
reason the contrasts in T and C across the upper
boundary layer are greater than they are across the
lower boundary layer. The differing importance of
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FIG. 12.Log-log relationship between NUTand viscosity
parameter A. Parameterization of NUTwith leads to the
relationship NUT = 0.42 Rao.23AO.to. Graphs are for Le
= 10, Ra = 106, Ro = I and k = 7r (upper curve), and Le
= 100, Ra = 105, Rp = I and k = 7r (lower curve).

diffusion across the boundary layers accounts for T
and C values in the core of the convection cellwhich
differ from 0.5 when A is other than unity.

Figure 12 illustrates the dependence ofNu on A.
Over the range of the experiments a linear fit in
log-log space is obtained. Equation (18) then be-
comes:

NUT= 0.42 Rao.23AO.IO• (26)

NUcalso has a similar relationship with A. Equa-
tion (19) becomes:

Nu- = 0.39 Rao.23 Le°.35 AO.05• (27)

Approximate relationships describing the upper
and lower thermal boundary layer thicknesses (OTU
and OTL, respectively) are given by:

OTU = 0.77 Ra-o.23A-0.08, (28)
and,

(29)

Similarly, the upper and lower compositional
boundary layer thicknesses (ocu and 0CL, respec-
tively) are given by:

ocu = 0.77 Ra-o.23Le-O.35 A-0.04 (30)
and,

OCL= ocuA -0.22. (31)

GEOLOGICAL IMPLICATIONS

Magma chamber parameters

Appropriate ranges of the governing dimension-
less numbers relevant to flow in crustal and upper
mantle magma reservoirs are given in Table 2. The
specific chemical properties of a given component
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(e.g., Si02, H20, MgO, etc.) enter into both the
Lewis number (Le) and buoyancy ratio (Rp). Al-
though composition has an obvious effect on vis-
cosity, inertia is of negligible importance in most
magmatic flows and the infinite Pr limit is entirely
justified a priori. Compositional expansivities (ac)
fall between approximately 0.1 and 2 for the major
components in a silicate melt; the large value of 2
is associated with H20 component (see Table 1).
Note that the range of Rp values covered by the
numerical experiments corresponds well with those
in nature.

Although it is generally assumed that thermal
Rayleigh numbers applicable to magma chamber
convection are quite large (SHAW, 1965, 1974;
BARTLETT, 1969; SPERA, 1980; HARDEE, 1983;
SPERA et al., 1982, 1986b), this has recently been
questioned (MARSH, 1985). MARSH (1985) argued
that the heat transfer through magma chambers,
being limited by conductive heat transfer in the
country rock, must imply low Rayleigh numbers.
The following example demonstrates that the Ray-
leigh number is large even when heat fluxes are
small (e.g., 1 HFU). The simplest way to show this
is to envision the heat transfer along a vertical
country-rock magma-chamber contact. A uniform
heat flux assumed along the boundary is governed
by heat conduction in the country rock.

A scaling analysis of the two-dimensional form
of the conservation equations of heat and momen-
tum enables one to estimate the thermal boundary
layer thickness «h) and the Nusselt number. The
analysis gives:

and,
qL L

NUT=-----R1/5• (33)
11TlkT {iT

In these expressions, L is the characteristic length
of the chamber-country rock contact, I1TI is the
temperature difference between chamber interior
and wall, q is the heat flux, kT the thermal conduc-
tivity ofthe country rock (or magma), and R is the
Rayleigh number based on the imposed (and con-
stant) heat flux at the chamber wall. The Rayleigh
number is defined according to R = agqL3/kK".
The validity of these scaling results can be dem-
onstrated by referring to the numerical solution by
SPARROWand GREGG (1956), who found:

in the infinite Prandtl number limit. Application
of these results to a magma chamber is made pos-
sible once typical parameters are assumed. For il-
lustrative purposes set L = 1 km, a = 5 X 10-5
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K-1, g = 10 m/s2, K = 8 X 10-7 m2/s, kT = 3.35 W
m :' K-1, " = 104 m2/s. Choosing a heat flux (q) at
the wall of 1 HFU (= 1 X 10-6 cal/ern" s = 41.84
mW/m2) one finds:

R=8X 108

(32)

I1TI-O.2K.

Note that even for the small value of heat flux used
here (1 HFU is less than the global average) the
implied Rayleigh number is quite large. Even
though the temperature difference across the cham-
ber is small, the magma will be actively and vig-
orously convecting. As is noted below, in many
geothermal areas heat flow can be one hundred
times greater than the value used here; our estimate
of magma chamber Rayleigh number is therefore
a low one. On this basis we cannot agree with the
findings of MARSH (1985).

Finally, we note that although most of numerical
experiments are for Le .;; 104, the asymptotic de-
pendence of NUc on Le enables one to estimate
light-component transport rates with some degree
of confidence. Similarly, the weak dependence of
NUT on Le and Rp implies that heat fluxes may be
reasonably well calculated even for species char-
acterized by low chemical diffusivities.

The ranges here are valid for a wide variety of
magma chamber conditions. The most variable is
the Rayleigh number, because of its cubic depen-
dence on length scale. Given these dimensionless
numbers it is now possible to apply the results to
magma chamber flows. The following calculations
use parameterizations which assume a wavenumber
(k) of 11'. This is equivalent to assuming a convection
cell as deep as it is wide (i.e., aspect ratio, a = 1).

(34)

Flux of heat and light-silicic-component

The steady state model fixes temperature and
composition at the upper and lower boundaries of
the chamber. Such conditions imply fluxes through
the boundaries of both heat and the light-silicic
component.

Heat flux is a quantity that can be directly com-
pared with measurements made in active geother-
mal areas, which are presumably underlain by active
magma chambers. Unfortunately, uncertainty re-
garding the present-day size and shape of active
magma reservoirs precludes more than a semi-
quantitative comparison. For high Lewis number,
the thermal Nusselt number is given by Equation
(26), so that the dimensional heat flux through the
roof of the chamber is given by:
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q = 0.42kT( ~:) Rao.23AO.IO• (35)

In this equation and in Equations (36) to (39) all
quantities are dimensional. For example, with ther-
mal conductivity, kT = 3.35 W m-1 K-1, ~T = 5
K, d = 5 km, a magma viscosity of 104 Pa- s, A
= 102then the heat flux is 3500 mW/m2 (-80 HFU
where 1 HFU = 1 X 10-6 cal/ern? s). By allowing
for latent heat effects and assuming the hydrother-
mal system can efficiently dissipate magmatic heat,
a hypothetical magma chamber solidification time
of roughly 40 000 years may be estimated.

Comparison can be made between the heat fluxes
calculated and the heat loss in geothermal areas.
Over large geothermal areas (1000 krrr') ELDER
(1965) suggests heat flow values averaging 100 HFU
(4200 mw/m"). More recently, SOREY (1985) has
computed the heat discharge divided by caldera area
for the Yellowstone, Long Valley and Valles geo-
thermal areas. Heat flux values of 2100, 630 and
500 mW/m2, respectively, were estimated based on
present-day discharge rates of high-chloride thermal
water in hot springs and seepage into rivers. It is
reassuring that these measurements are in agree-
ment with the numerical experiments.

Rates of transport of silicic-component down-
ward can be calculated from the compositional
Nusselt number relationship given by Equation
(27). The compositional Nusselt number is defined
according to:

);d
Nuc== pD~C'

where j, is the flux of the ith light component, p the
density, D the chemical diffusivity and ~C the ex-
ternally maintained difference in composition
across the chamber. By combination of Equations
(27) and (33), the dimensional flux of light com-
ponent is determined according to:

0.39pK~Ci. d Rao.23 Le-O.65A0.05. (37)

With Ra = 8 X 1013, Le = 104 (for water in melt),
p = 2500 kg/m", K = 10-6 m2/s, ~C = 0.05, A
= 100 and d = 5 km, Equation (34) yields a flux
of water, jH20 = 5.0 X 10-8 kg/m? s. If the cross-
sectional area of the magma chamber is taken as
d2, then the mass flux corresponds to an effective
mass flow rate for H20 of 4.0 X 107 kg/year. The
residence or redistribution time for H20 within the
chamber may be defined as:

where CH20 is the average H20 content of melt
within the chamber (say CH20 = 0.025). For the
parameters cited, tH20 = 2.0 X 105 years. The effec-
tive rate at which H20 is transported from top to
bottom of the chamber is therefore VH20 - d/tH20

- 2.5 em/year. The eddy diffusivity of H20 cor-
responding to this rate is roughly Deddy (H20)
- d2/tH20 = 4.0 X 10-6 m2/s which is larger by a
factor of 105 than the corresponding molecular dif-
fusivity of H20 of _10-11 m2/s (DELANEY and
KARSTEN, 1981; SHAW, 1974). Convection clearly
plays a dominant role in the redistribution of H20
in a magma chamber.

The mass flux can be interpreted in terms of the
rate at which crystallization of anhydrous phases
takes place at the top boundary of the chamber. In
the above example, the implied rate of crystalliza-
tion of the "upper border group" is jj p~C which
corresponds to about 4 m per thousand years.

Convection rates

From Equation (20), the dimensional maximum
convection velocity is given by:

(36)

K
W= 0.09 d Ra062•

For Ra = 1012, this corresponds to a velocity of 16
km/yr. This value is in agreement with the calcu-
lations based on boundary-layer theory made by
SPERA et al. (1982). The circulation time for a
magma parcel is therefore 4d/ W - 1 year.
It is noted that both a 5 mm crystal and a 5 ern

xenolith will have settling velocities several orders
of magnitude less than convective velocities in the
center of the cell. This finding suggests that crystal
fractionation by settling is very unlikely in melt
dominated magma chambers, except at the margins
where velocities are smaller. More detailed studies
on the distribution of crystals in magma chambers
support this finding (MARSH and MAXEY, 1985;
WEINSTEIN et al., 1986).

(39)

(38)

Boundary layer thicknesses

Equations (21) and (22) give the thermal and
compositional boundary-layer thicknesses, respec-
tively. For Ra = 1012, Le = 104 and d = 5 km these
boundary layer thicknesses are 6 m and 0.2 m, re-
spectively. Note that Oc depends on the molecular
diffusion coefficient of the light component. Al-
though these calculations do predict that a contin-
uously zoned cap of "evolved" magma will accu-
mulate at the top of a chamber, the thickness of
that zone is quite thin.
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Existence of layers

Results of numerical experiments plotted in Fig-
ure 3 cover a large range of conditions. The values
of Prandtl number (Pr) and buoyancy ratio (Rp) in
these experiments are in the range of those in
magma chambers, i.e., Pr = cc and 1 < Ro < 50.
We are not able to model the complete range of
magma chamber Lewis or Rayleigh numbers.
However, it is noted that magma chambers lie at
Lewis numbers well above the critical Lewis num-
bers that yield steady single-cell convection. Ad-
ditionally, as Rayleigh number increases this critical
Lewis number will drop even farther from relevant
magma chamber Lewis numbers. The data com-
prising Figure 2 are for A = 1and k = 7r. A primary
conclusion of this paper is that given these condi-
tions steady state magma chamber convection cells
will be simple single cells. The value of A, although
changing some of the characteristics of the cells,
does not change their single-cell nature.

At values of k greater than 10 (aspect ratio -3)
multiple steady states exist. Two points should be
noted.

(1) Single and double layer solutions are found
for k:» 10 in both multicomponent and pure ther-
mal convection experiments. Therefore, they are
not solely a phenomena of multicomponent con-
vection.

(2) Aswe have studied only steady state solutions
it is not possible to determine which solution (the
single cell or double cell) will be produced in the
evolution of a magma chamber. Both solutions
should be admitted to be possible in tall, thin
magma chambers.

CONCLUSIONS

This study of steady state double-diffusive con-
vection in magma chambers was conducted for
boundary conditions which prescribed fixed tem-
peratures and compositions at the top and bottom
of the chamber. Within this context, the following
conclusions are reached:

(1) The mean-field approximation to the full
convective equations can successfully model con-
vection over a large range of magma chamber con-
ditions. In particular it has been possible to model
Rayleigh numbers as high as 1010 and Lewis num-
bers as high as lOs.

(2) Isoviscous convection dominated by a wave-
number of 7r (as might be expected in an equidi-
mensional magma chamber) is found to exist above
a critical Lewis number. Below the critical Lewis
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number, unsteady and conductive solutions are
found. Above the critical Lewis number, all steady-
state solutions are single layer convection cells. No
layered convection is found. The critical Lewis
number is a function ofthe buoyancy ratio and the
Rayleigh number. Magma chambers lie above this
critical Lewis number and therefore it is suggested
that steady-state magma chambers will exhibit sin-
gle cell convection.

(3) Convection is characterized by thin thermal
boundary layers and thinner compositional bound-
ary layers. The cores ofthe convection cells are iso-
thermal/isochemical. For the typical parameters
used in the text thermal and compositional bound-
ary layer thicknesses are 6m and 20 em respectively.

(4) Calculated heat fluxes for magma chambers
are in agreement with measured heat fluxes in hy-
drothermal areas. Such fluxes are of the order of
4200 mW/m2 (100 HFU).

(5) The boundary conditions imply fluxes of
chemical species. For the parameters given in the
text, the effective rate at which water is transported
through a magma chamber is about 2.5 em/yr. Ev-
idently convection plays a dominant role in the re-
distribution of water in magma chambers.

(6) Characteristic convective velocities on the
order of km/yr prohibit fractionation by crystal set-
tling in both rhyolitic and basaltic magmas, except
within flow along chamber margins.

(7) For hexagonal convection planforms at
wavenumber k = 7r, the characteristics of the flow
become dependent on Prandtl number (Pr) for Pr
~ 100. As Prandtl numbers for magmatic systems
exceed 100, future work is needed to investigate the
nature of this potentially important transition. This
dependence is manifested in increased fluxes of heat
and composition.

(8) When viscosity is temperature dependent the
style of convection is similar to that for isoviscous
convection. Velocities and boundary layer thick-
nesses differ quantitatively from those found in
isoviscous convection.

(9) In chambers dominated by high wavenum-
bers (k > 10, such as might be expected in tall thin
magma chambers) two steady-state solutions are
found. The first, corresponding to a high heat flow,
is a single convection cell. The second, correspond-
ing to a low heat flow, consists of two vertically
stacked convecting cells separated by a diffusive in-
terface. Given the same parameters and a high
wavenumber, both sets of solutions are found for
purely thermal convection, in addition to double
diffusiveconvection. It is possible that these double-
layer convection cells could occur in tall thin
magma chambers. This model, on account of its



304 S. Clark, F. J. Spera and D. A. Yuen

steady-state nature, cannot discriminate between
these two solutions.
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