The petrogenetic role of methane: Effect on liquidus phase relations and the solubility mechanism of reduced C-H volatiles

W. R. TAYLOR and D. H. GREEN
Geology Department, University of Tasmania, GPO Box 252C, Hobart, Australia 7001

Abstract—Methane and other reduced volatiles may be an important species in the Earth's mantle. The nature of mantle partial melting under reduced conditions in the presence of such volatiles is, however, largely unknown. To evaluate the petrogenetic role of C-H volatiles experimental liquidus studies were undertaken in the system nepheline(Ne)-forsterite(Fo)-silica(Q)-C-O_H at 28 kbar. Methane-dominated fluids are conveniently generated in high pressure experiments from a mixture of AlC_3 and Al(OH)_3. Compared to the volatile-absent system, the effect of CH_4-rich fluids is to expand the Fo phase field relative to En (melt depolymerization) and to bring phases of high octahedral aluminum content onto the liquidus (leading to early appearance of garnet on the liquidus of other compositions). This contrasts with the effect of CO_2 which gives rise to the expansion of the En phase field and the effect of H_2O which results in a greater expansion of the Fo field than CH_4. The magnitude of liquidus temperature depressions for C-H fluid-saturated Fo-Ne-Q melts are comparable to that of pure CO_2 (~90°C at 28 kbar).

Infrared (IR) spectroscopic investigations of C-H fluid saturated jadeite and sodamellite glasses quenched from 30 kbar, establish the presence of both dissolved, oxidized, and reduced components as also required by charge-balance constraints. The former occurs as O-H groups and the latter is consistent with a reduced network component of O:Si stoichiometry <2 ("silicon monoxide" units). There is no spectroscopic evidence for the presence of dissolved molecular CH_4, other C-H groups or carbonate. Pyrolysis/gas chromatographic analyses give dissolved H contents equivalent to ~3 weight percent H_2O and reduced C contents of 1000-2000 ppm (wt) in a form yet to be characterized. Aluminosilicate melts have a strong preference for dissolved Hover C under reduced conditions.

INTRODUCTION

MAJOR ADVANCES in understanding the role of volatile components in igneous petrogenesis have taken place over the last ten years. Much of this effort has been directed at determining the petrogenetic role of the oxidized volatiles CO_2 and H_2O which are known to have a significant effect on super-solidus phase relations at upper mantle pressures (see review by HOLLOWAY, 1981).

Because H_2O and CO_2 are the most abundant species in volcanic gases (e.g., ANDERSON, 1975), it has been commonly assumed that they will also be the most abundant species at depth in the Earth's upper mantle. If this basic assumption is incorrect, and this will depend to a large extent on the mantle's oxidation state, then the role of volatiles other than H_2O and CO_2 must be considered (RYABCHIKOV et al., 1981).

A variety of evidence exists to support the idea that at least part of the upper mantle is reduced enough to stabilize CH_4 at depth (f_O_2 ≲ IW + 2 log units). This evidence includes intrinsic oxygen fugacity measurements on mantle-derived minerals indicating the prevalence of low f_O_2 conditions amongst "type A" upper mantle (ARCULUS and DELANO, 1981) and the finding of primordial (^4He correlated) CH_4 as a significant component of fluids outgassing at mid-ocean ridge hydrothermal centers (WELHAN and CRAIG, 1981, 1983). Current views on the redox state of the Earth's mantle have recently been summarized by WOERMANN and ROSENHAUER (1985, in particular see pp. 317-322). Although this area is still one of active debate and inquiry, it seems likely that a range of oxidation states from relatively oxidized (f_O_2 ≳ FMQ) to reduced (f_O_2 ≲ IW) are applicable to the upper mantle. Volatiles in the reduced part of the system C-O-H may therefore be of considerable importance in igneous petrogenesis.

If magma generation involving volatile components takes place in a reduced environment, for example at f_O_2's near the iron-wustite (IW) oxygen buffer, then in the model system "peridotite"-C-O-H, volatiles will be dominantly CH_4 > H_2O > H_2 > C_2H_6 mixtures and crystalline carbonates will not be stable relative to diamond or graphite (RYABCHIKOV et al., 1982; EGGLE and BAKER, 1982). To explore the nature of mantle melting under reduced conditions an adequate understanding of the thermodynamic properties of C-O-H fluids at elevated pressures and temperatures is required. Reduced volatile interactions with silicate melts can then be investigated by experimental and spectroscopic means. The first aspect has been considered by TAYLOR (1985, 1987) and the second is the purpose of this paper.
The contrasting effects of oxidized versus reduced volatiles on liquidus phase relations are investigated in the model peridotite system nepheline(Ne)-forsterite(Fo)-silica(Q) under conditions of CH₄, CO₂, and H₂O volatile saturation and in the absence of volatiles. To place constraints on the mechanism of reduced C–H volatile dissolution in aluminosilicate melts, CH₄-saturated, graphite-free glasses of sodamellite (NaCaAlSi₂O₇, Sm) and jadeite (NaAlSi₂O₆, Jd) composition have been analysed for carbon and hydrogen and investigated by Fourier Transform infrared (FTIR) spectroscopic methods.

Iron–bearing compositions have not been considered in this study primarily because f_{O_2} conditions in the presence of a C–H fluid will lie well within the Fe-metal stability field. The effect of reduced volatiles on these compositions must instead be investigated in the presence of mixed H₂O–CH₄–H₂ fluids at higher f_{O_2}'s (near the IW buffer for example). In this study we concentrate on identifying the mechanism of reduced C–H volatile dissolution free from interference by other species and thus provide the necessary basis for extension into natural systems.

PREVIOUS WORK ON REDUCED C–H VOLATILE INTERACTIONS WITH SILICATE MELTS

Little is known of how reduced volatiles interact with silicate melts. EGGLER and BAKER (1982) conducted a number of reconnaissance experiments determining the effect of C–H volatiles on the melting and liquidus phase relations of diopside and the composition diopside (Di₃₅) pyrope (Py₃₀) at $P > 20$ kbar. Experimental f_{O_2} conditions were believed to be near the Si–SiO₂ buffer but could not be determined directly. EGGLER and BAKER (1982) found liquidus depressions of ~100°C in diopside at 21 kbar and a large liquidus field of olivine plus garnet extending to at least 40 kbar in Di₃₅Py₃₀ coexisting with C–H fluid. In the latter case this differs from the effect of H₂O which does not bring garnet onto the liquidus and the effect of CO₂ which stabilizes orthopyroxene to high pressures. The presence of “depolymerized” phases such as olivine and garnet on the C–H volatile saturated liquidus led to the suggestion that reduced volatiles have a depolymerizing effect on silicate melts. Quench problems did not allow spectroscopic investigation of the glasses produced in their study and a detailed solubility mechanism could not be ascertained. In the only other study involving CH₄-bearing fluids, JAKOBSSON (1984), using a pyrolysis/mass spectrometry technique, determined the dissolved volatile content of quenched albite glasses equilibrated with H₂O–CH₄ fluids at 10–25 kbar ($f_{O_2} \approx$ IW). Gases released at 1200°C consisted mainly of H₂O (~80 mol percent) component and H₂ and C₂H₆ as minor (≤ 10 mol percent) components. Such fluids are stable only at High pressure experiments

All high pressure experiments were performed with 0.5–diameter (1.27 cm) solid-media, high-pressure apparatus using techniques similar to those of GREEN and RINGWOOD (1967). Temperatures were recorded with a Pt/Pt₁₀₀Rh₀₀ thermocouple automatically controlled to within ±5–7°C of the set value. All experiments were carried out by using the “piston-in” technique and applying a ~10% pressure correction to nominal load pressures; quoted pressures are accurate to ±1 kbar.

Silicate compositions in the system nepheline–forsterite–silica (Ne–Fo–Q) were prepared from analytical reagent grade Al₂O₃, SiO₂, Na₂CO₃ and MgO fired at 900°C after thorough mixing and repeated grinding under acetone. Compositions were checked by microprobe analysis of glass beads prepared from the sintered oxide mixes on an Ir-stripe heater. Sodamellite and jadeite starting materials were powdered glasses prepared from sintered oxides. Samples were melted at 1250°C in Pt–crucibles and quenched in air to colorless glasses; their composition and homogeneity were checked by microprobe analysis.

Methane-saturated experiments

Calculations by TAYLOR (1985, 1987) reveal that under upper mantle pressure-temperature conditions C–H fluids in equilibrium with graphite contain CH₄ as a major (>80 mol percent) component and H₂ and C₂H₆ as minor (<10 mol percent) components. Such fluids are stable only at f_{O_2}'s below ~IW–4 log f_{O_2} units. Under these conditions f_{O_2} is large so that maintenance of fluid excess conditions during an experiment requires minimization of diffusive H₂-loss by employing run durations as short as possible while still achieving fluid–melt equilibrium. In preliminary studies, we found that the use of complex organic compounds as a methane-source (such as those used by HOLLOWAY and REESE, 1974; EGGLER and BAKER, 1982) results in the formation of disordered graphite which persists in experiments for run durations of less than a few hours. To overcome this problem in short duration experiments that do not incorporate a solid f_{O_2} buffer (as those undertaken here), methane should ideally be produced rapidly and by direct reaction.
Methane, together with a small amount of H₂, can be readily generated at 1 bar by the action of H₂O on Al₄C₃ (Wade and Banister, 1973). Because this reaction proceeds rapidly to completion and produces a C-H fluid with a CH₄:H₂ ratio of ~9:1 (similar to that calculated for high pressure-temperature equilibrium), it is an ideally suited generation reaction. By including Al(OH)₃ as the source of H₂O a convenient solid reactant can be prepared. Overall the methane generation reaction may be written:

\[4\text{Al(OH)}_3 + \text{Al}_4\text{C}_3 \rightarrow 4\text{Al}_2\text{O}_3 + 3\text{CH}_4 + \text{H}_2 + 2\text{C}_2\text{H}_6. \]

(1)

To give the fluid-generating carbide/hydroxide mixture sufficient bulk, alumina was used as a diluant giving a mixture capable of generating 0.2 mg CH₄/10 mg mix. To eliminate the possibility that adsorbed water or excess air in the capsule might lead to oxidation of methane and production of H₂O, a 1:1 molar ratio of Al(OH)₃ to Al₄C₃ (three times carbide excess over reaction stoichiometry) was employed. The presence of excess carbide was confirmed optically and by x-ray diffraction at the end of each experiment. All mixtures containing Al₂O₃ (98 weight percent purity, Goodfellow Metals #AL516010) were stored under vacuum desiccation to prevent reaction with atmospheric moisture.

Experiments with C-H volatiles were carried out in large capacity “buffer” assemblies using Pt outer capsules (3.5 mm O.D.) and inner unsealed Pt capsules containing ~15 mg of silicate sample. Sample-containing capsules were heated briefly to red-heat prior to loading the methane-source to ensure removal of all traces of adsorbed water. The inner capsule was surrounded with sufficient fluid-generating mix to produce ~1 mg of methane. For jadeite and sodamellite compositions, experiments were of 30 minutes duration at 30 kbar, 1320°C and 1350°C, respectively; run details for system Ne-Fo-Q experiments are listed in the Appendix. Talc was chosen as the pressure transmitting medium to maximize the external force of the system and thus limit H₂ loss from the capsule.

Prior to experiments with silicates a “blank” run was performed at 30 kbar, 1300°C for 15 minutes with the aim of determining whether fluid phase equilibrium is achievable in short run times by this technique. Analysis of the fluid phase following the run was accomplished by mass spectrometry using a capsule piercing technique. The presence of a vapor phase is readily recognized by the distended nature of the capsule. The device used for capsule piercing consists of a modified regulating valve (Whitney #SS-1 VS6) with a redesigned stem tip fashioned into a hardened needle point. A removable cradle serves to position and hold the capsule in place during piercing. Gases were released under vacuum (~10⁻⁴ Torr) and directed into the ion-source of a VG-micromass 7070 double focusing mass spectrometer via a modified probe insertion technique. To achieve low background levels, particularly for H₂O caused chiefly by absorbed molecules on metal surfaces, it was found necessary to evacuate the whole system (probe plus piercer) for ~12 hours prior to taking measurements. After piercing, mass spectra were acquired by multiple scans of ~2 sec duration over the mass range 10–70 m/z. The total ion current was monitored during the piercing experiment and both background and sample spectra were recorded at various sensitivities. With the data acquisition system used by the VG instrument, H₂ was below the lower mass–range limit of recorded spectra. The presence of both H⁺ and H₂ ions was, however, confirmed qualitatively by oscillographic traces down to low

mass numbers. Mass spectra are normalized to zero background (mainly residual air and water vapor in the instrument) by reference to the m/z 32 (O₂) or 40 (Ar⁺) peak. X-ray diffraction (XRD) and optical examination of the solid product showed the presence of Al₂O₃, ordered graphite and excess Al₄C₃. No oxycarbides were identified either optically or by XRD. The presence of abundant ordered graphite indicates that an f₀ buffer reaction of the type: C(graphite) + 2H₂ = CH₄, has been operative during the experiment. The form of the mass spectra for the blank experiment and for those experiments with silicate present are identical except for a finite amount of H₂O (<0.2 mol percent) is found in the latter. Figure 1 shows a typical methane (m/z 12–16) and ethane (m/z 24–30, m/z 28 overlaps with background N₂) spectrum for an experiment with silicate present. Trace amounts of C₃ hydrocarbons are also present. The C₃H₆/CH₄ ratio of the fluid is slightly higher than predicted by the MRK—equation calculations of Taylor (1986): ~15 vs. 18 expected, overall the agreement with theory is good. Derived fluids are thus believed to represent those at graphite-fluid equilibrium. The absence of oxygen-containing volatiles (i.e., H₂O) places an upper limit on the log f₀ of the system at near IW−5 log f₀ units under experimental conditions for the “blank” experiments and near IW−4.5 log f₀ units for those containing silicate. The use of a carbide/hydroxide mixture is thus a rapid and convenient method for preparing fluids dominated by CH₄ at high pressures.

Water, carbon dioxide and volatile-absent experiments

These experiments were performed in talc/pyrex or talc-only (for water-saturated runs) sleeve assemblies using 2.3 mm O.D. Pt or Ag₅₀Pd₅₀ capsules. H₂O (~30 weight percent) was added via microsyringe and CO₂ (~15 weight percent) was generated from Ag₂C₂O₄. Run times for CO₂ and volatile-absent experiments were kept to <20 min. (see Appendix) to avoid the risk of H₂O formation by hydrogen diffusion into the capsule. All mixes and assembly parts were dried at 120°C, 24 hours prior to use.

Spectroscopic methods

Spectra of C-H fluid—saturated glasses were investigated by Fourier Transform infrared (FTIR) spectroscopy using a Digilab model FTS—20E spectrometer. FTIR spectroscopy offers significant advantages over conventional instrumentation, including increased signal-to-noise ratio, increased sensitivity due to high energy throughput and ready access to computer-based data manipulation procedures such as band fitting and spectrum subtraction. Spectra of both powdered glass and crystalline samples were obtained by the conventional KBr disc method. Approximately 2 mg (1 mg for crystalline compounds) of sample was ground together with 200 mg of IR-grade KBr in an agate mortar for 10 minutes. After drying the powder at 120°C, pellets were pressed between 1 cm diameter polished stainless steel dies; any cloudy discs were remade. Discs were then dried under P₂O₅ desiccant overnight to remove traces of adsorbed water. Spectra were acquired by signal averaging 200 scans at 4 cm⁻¹ resolution referenced against a blank KBr disc.

Difficulties with KBr powder spectroscopy rest largely with its reproducibility. Differences in sample preparation, reflected mainly in particle size distribution and orientation effects may lead to changes in bandwidths and relative
CAPSULE GASES (various sensitivities)

B.

BACKGROUND AIR + WATER VAPOUR (medium sensitivity)

Fig. 1. (A) Mass spectrum of capsule gases released from run T-1341 at low (m/z 10-23), medium (×10, m/z 23-33) and high (×100, m/z >33) sensitivities. Methane: m/z 13-17; ethane: m/z 25-30; C₃₊ hydrocarbons m/z >36; background water vapour and air: m/z 17-18, 28, 32. (B) Instrumental background at medium sensitivity. Note suppression of background ion intensity due to input of capsule gases (ratios of individual gases, however, remain unchanged).

intensities (McMillan, 1985). Such changes are of critical importance in quantitative studies but are of lesser importance in the interpretative work undertaken here. Nevertheless, reproducibility checks were performed by the preparation of duplicate discs, in all cases using identical preparative methods. Duplicates showed close similarity in spectral features (as illustrated in Figures 7A and 7B). It is believed that the reproducibility of the KBr disc method, provided sample preparation techniques remain consistent, is not a problem in the interpretation of the silicate glass and crystal spectra considered here.

Analytical Methods

Pyrolysis/gas chromatography

Quantitative carbon and hydrogen analyses of the C–H fluid-saturated glasses were performed with a Hewlett-Packard 185B CHN analyser at the Analytical Services Section, Research School of Chemistry, Australian National University. The method has been previously applied by Brey (1976) in the analysis of ~mg quantities of silicate glasses containing dissolved carbonate and water. For
C–H fluid–saturated glasses that may contain dissolved reduced components, ~0.5 to 1.5 mg of sample was intimately mixed with 85 mg of MnO2/WO3/Cr2O3 oxidant. Samples were then combusted at 1080°C for 90 seconds following an initial heating at 70°C to remove atmospheric gases.

In the pyrolysis of reduced C-bearing glasses, the possibility exists that crystallites of silicon carbide might form during the combustion process and remain unreactive to oxidation (SiC being known for its chemical inertness and high thermal stability: ROCHOW, 1973). To determine whether the pyrolysis/gas chromatography technique gives accurate results for the analysis of substances containing (or with the potential to form) Si–C bonds, three standard compounds consisting of mixtures of finely ground SiC and silica powder were analysed. Results for unknowns and standards are listed in Table 1. Standards were combusted for 90 seconds and 120 seconds (in the latter case there was a considerable loss in sensitivity).

Electron microprobe

Electron microprobe analyses for carbon were performed at the Electron Optical Centre (E.O.C.), University of Adelaide (JEOL 733 microprobe, B. J. Griffin analyst) and Central Science Laboratory, University of Tasmania (JEOL JXA50A microprobe). Measurements were obtained with a light element (STE crystal) wavelength dispersive spectrometer using 15 kV accelerating voltage in the former case and 10 kV in the latter. The beam in both cases was defocussed to a 10–20 µm diameter spot with a 50 nA beam current to minimize specimen damage. Polished epoxy mounts containing the samples, blanks and standards are listed in Table I. Standards were combusted for 90 seconds and 120 seconds (in the latter case there was a considerable loss in sensitivity).

Table 1. Pyrolysis/gas chromatography analytical results*

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Comp.</th>
<th>C (Weight percent)</th>
<th>H2O (Weight percent)</th>
<th>Combustion time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T−1296</td>
<td>Jd</td>
<td>0.13 ± 0.03</td>
<td>2.9 ± 0.4</td>
<td>90</td>
</tr>
<tr>
<td>T−1341</td>
<td>Sm</td>
<td>0.09 ± 0.07</td>
<td>3.0 ± 0.5</td>
<td>90</td>
</tr>
<tr>
<td>T−1318</td>
<td>Sm</td>
<td>0.12 ± 0.04</td>
<td>1.7 ± 0.1</td>
<td>90</td>
</tr>
<tr>
<td>T−1250</td>
<td>Sm</td>
<td>not analysed</td>
<td>5.5 ± 0.2</td>
<td>90</td>
</tr>
</tbody>
</table>

At pressures >25 kbar the system nepheline(Ne)–forsterite(Fo)–silica(Q) contains liquidus phase fields of forsterite (Fo), enstatite (En) and jadeite (Jd) analogous to the major minerals of upper mantle peridotite. This system forms the base of the simplified basalt tetrahedron (YODER and TILLEY, 1962) and as such offers a useful model for investigating small degrees of partial melting of mantle peridotite. Liquidus phase relationships in the system Ne–Fo–Q have therefore been widely studied particularly as a function of pressure and activity of volatile species (KUSHIRO, 1968, 1972; EGGLER, 1978; WINDOM and BOETTCHER, 1981).

The position of the Fo–En two–phase boundary can be used as an indicator of melt–phase silica activity reflecting the relative degree of silicate melt polymerization/depolymerization (as discussed most recently by RYERSON, 1985). The aim of this study is to locate the Fo–En two–phase boundary in the system Ne–Fo–Q under conditions dominated by a CH4–rich vapor phase. Comparisons can then be made with the boundary position under volatile–absent, H2O–saturated and CO2–saturated conditions. The resultant phase diagrams can be used to predict the nature of mantle melting under conditions of saturation with different volatile species and hence over a range of foilio's.

A pressure of 28 kbar was chosen to allow incorporation of the volatile–absent experimental data of WINDOM and BOETTCHER (1981) along the joins jadeite–enstatite (Jd–En) and jadeite–forsterite (Jd–Fo) as well as duplicating pressure conditions near the top of the oceanic LVZ where ~2% partial melt is believed to exist (GREEN and LIEBERMANN, 1976). Experiments were conducted along the join Ne55Q45–Ne55Fo45 to provide approximately 90° intersection with the two–phase boundary at liquidus temperatures that are not prohibitively high (i.e., <1500°C). Vapor saturation was confirmed in each experiment by piercing the sample capsule and noting the weight loss at 25°C and 110°C. All
water-saturated runs produced a fine white precipitate surrounding the fluid exit hole; this arises from solid-phase solubility in high pressure-temperature aqueous fluids as discussed by RYABCHIKOV et al. (1982).

Experimental charges were examined optically and by electron microprobe analysis; all showed quench effects of variable extent, mainly as MgAl_2SiO_6(MgTs)-rich pyroxene overgrowths sometimes extending to Jd-rich compositions and as individual crystals on and about Enss. Skeletal olivines are present in some runs. In selected experiments, electron microprobe analyses established liquid and crystal compositions as recorded in the Appendix and Table 2. In practice, only for the volatile-absent runs, showing the least quench effects and only small Na/Al ratio deviations from 1, were we able to analyse liquid compositions directly. This allowed the volatile-absent Fo-En_m boundary to be well constrained with three experiments at Ne_{55}F_{02.5}Q_{20}. A liquid composition was estimated for CO_2-saturated run T-1227 from analysis of a large glass-rich area. The composition was projected back into the Na/Al = 1 plane from average quench En. In both H_2O-saturated and C-H fluid-saturated OH-containing glasses the combined effects of quench crystal growth and Na-volatilization under the electron microprobe beam precluded any estimate of liquid composition.

The position (in terms of weight percent Fo) of experimentally determined Fo-En_m two-phase boundaries for the Ne_{55} compositions at P = 28 kbar are listed below:

<table>
<thead>
<tr>
<th>Volatile species</th>
<th>Fo Weight percent</th>
<th>Estimated liquidus temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absent</td>
<td>24</td>
<td>1495 ± 5</td>
</tr>
<tr>
<td>H_2O-saturated</td>
<td>18 ± 1</td>
<td>1120 ± 15</td>
</tr>
<tr>
<td>CH_4-H_2-saturated</td>
<td>21 ± 1</td>
<td>1410 ± 15</td>
</tr>
<tr>
<td>CO_2-saturated</td>
<td>34 ± 1</td>
<td>1410 ± 15</td>
</tr>
</tbody>
</table>

These data allow delineation of Fo and En_m liquidus phase fields on the ternary Ne–Fo–Q diagram (Figure 2); the volatile-absent fields for Jd_m, Sp (MgAl_2O_4 spinel) and Ne_{55} (nepheline_m) are from GUPTA et al. (1987).

Volatile-absent boundary

The position of the volatile-absent two-phase boundary is consistent with the experimental results of KUSHIRO (1968) on the composition NFA–1 (Ne_{62}Fo_{18}Q_{20}) which has Fo on the liquidus up to 30 kbar. The intersection of the boundary with the Fo–Q binary system is estimated from the data of CHEN and PRESNALL (1975) to occur near Fo_{24}. These constraints place the Fo–En_m boundary at 28 kbar close to the composition Jd_{32}F_{06.8}. WINDOM and BOETTCHER (1981, Figure 2) inferred that this point should lie near Jd_{50}F_{50} but this position could not be adequately constrained by their experimental data. Recent experimental work in the dry system by GUPTA et al. (1987) has refined the position of the three phase Fo–En_m–Jd_m point. Although differing from WINDOM and BOETTCHER'S (1981) interpretation, it is in agreement with their experimental data along Table 2. Sm and Jd composition glasses: experimental results at 30 kbar

<table>
<thead>
<tr>
<th>Run #</th>
<th>Comp.</th>
<th>Volatile</th>
<th>T°C</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1158</td>
<td>Sm</td>
<td>absent</td>
<td>1420</td>
<td>Glass</td>
</tr>
<tr>
<td>T-1159</td>
<td>Sm</td>
<td>absent</td>
<td>1370</td>
<td>Sm crystals</td>
</tr>
<tr>
<td>T-1160</td>
<td>Sm</td>
<td>absent</td>
<td>1395</td>
<td>Glass</td>
</tr>
<tr>
<td>T-1178</td>
<td>Sm</td>
<td>CO_2 ~8 weight percent</td>
<td>1300</td>
<td>Clear glass (MH buffer)</td>
</tr>
<tr>
<td>T-1250</td>
<td>Sm</td>
<td>H_2O ~6 weight percent</td>
<td>1300</td>
<td>Clear glass (graphite capsule)</td>
</tr>
<tr>
<td>T-1318</td>
<td>Sm</td>
<td>C-H 9 weight percent</td>
<td>1320</td>
<td>Glass + grossular crystals</td>
</tr>
<tr>
<td>T-1341</td>
<td>Sm</td>
<td>C-H 9 weight percent</td>
<td>1350</td>
<td>Clear glass containing small fluid inclusions <1 µm diam.</td>
</tr>
<tr>
<td>T-1442</td>
<td>Sm/SiC</td>
<td>—</td>
<td>1500</td>
<td>Glass + disseminated graphite</td>
</tr>
<tr>
<td>T-1296</td>
<td>Jd</td>
<td>C-H 10 weight percent</td>
<td>1320</td>
<td>Clear glass, inclusion-free</td>
</tr>
</tbody>
</table>

Microprobe analyses:

<table>
<thead>
<tr>
<th></th>
<th>SiO_2</th>
<th>Al_2O_3</th>
<th>CaO</th>
<th>Na_2O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1341 (Av. glass)</td>
<td>44.2 (.4)*</td>
<td>18.6 (.4)</td>
<td>20.9 (.3)</td>
<td>11.8 (.2)</td>
<td>95.5</td>
</tr>
<tr>
<td>T-1296 (Av. glass)</td>
<td>56.0 (.6)</td>
<td>23.6 (.5)</td>
<td>—</td>
<td>14.7 (.2)</td>
<td>94.3</td>
</tr>
<tr>
<td>T-1318 (grossular)</td>
<td>39.48</td>
<td>22.56</td>
<td>37.56</td>
<td>0.00</td>
<td>99.6</td>
</tr>
</tbody>
</table>

* Figures in brackets are 1σ standard deviations.
Reduced C-H volatiles

FIG. 2. Ternary liquidus phase diagram (weight percent) for the system Ne–Fo–Q at 28 kbar showing the position of the Fo–En$_{ss}$ two-phase boundary under volatile-absent and CO$_2$, H$_2$O and CH$_4$–H$_2$ volatile-saturated conditions. Volatile-absent phase boundaries are from GUPTA et al. (1986) and this work. Dashed phase boundaries are inferred. Compositions studied are indicated by the filled circles on the join Ne$_5$sFo$_{ss}$–Ne$_5$sQ$_{ss}$, adjacent numbers indicate weight percent Fo component. Composition NFA–1 is from KUSHIRO (1968) and the 20 kbar water-saturated Fo–En$_{ss}$ boundary is from KUSHIRO (1972). Double circles are analysed liquid compositions.

the Jd–Fo and Jd–En joins as well as the earlier data of KUSHIRO (1968). Figure 3 presents the amended phase diagram for the Jd–Fo pseudobinary join. The main change from WINDOM and BOETTCHER (1981) is the expansion of the Fo + L phase field (note also that two points are mislabelled on their original figure).

CO$_2$–saturated boundary

The shift in position of the Fo–En$_{ss}$ boundary relative to the volatile-absent system is greatest for CO$_2$–saturation (expansion of En$_{ss}$ field from Fo$_{24}$ to Fo$_{34}$ at Ne$_{ss}$) reflecting CO$_2$'s strong melt polymerizing role. Equilibrium and quench En$_{ss}$ compositions on this boundary are rich in MgTs component (equilibrium crystals contain 15–17 weight percent Al$_2$O$_3$) and poor in Na$_2$O (<3.5 weight percent). This behaviour may arise from a decrease in Na$_2$O activity in the melt due to sodium–carbonate complex formation and accords with the CO$_2$ solubility mechanisms discussed by MYSEN and VIRGO (1980b,c).

H$_2$O–saturated boundary

The depolymerizing role of H$_2$O dominated fluids is clearly illustrated in Figure 2. Expansion of the Fo phase field at Ne$_{ss}$ relative to the volatile-absent system is from Fo$_{24}$ → Fo$_{18}$. This shift is not as large as that for CO$_2$ in the opposite direction; however, there appears to be a substantial pressure effect associated with the H$_2$O–saturated boundary. At $P_{H_2O} = 20$ kbar this boundary is found near Ne$_{ss}$Fo$_{17}$Q$_{38}$ (KUSHIRO, 1972) a difference of Fo$_{11}$.
from the volatile-absent boundary at the same pressure (cf. the Fo6 difference at 28 kbar). This effect may be ascribed to a diminishing ability of H2O to depolymerize melts at higher pressures and could be due to a number of factors:

(a) changes in the solubility of solid components in co-existing aqueous fluid with pressure;
(b) dissolution of a higher proportion of H2O in molecular form with increasing P_{H2O} as shown by Stolper (1982); because molecular water dissolves without (Si, Al)-O-Si bond cleavage there will be no accompanying network depolymerization;
(c) change in behaviour of H2O with pressure toward that of a network polymerizer by formation of a greater proportion of alkali cation–hydroxy complexes relative to Si–OH bonds in an analogous fashion to CO2 dissolution forming carbonate complexes.

If H2O tends to be more polymerizing with increasing pressure via any of the above mechanisms, then there are important consequences for magma genesis. Thus, CO2 may not be required in the genesis of highly silica undersaturated magmas (as proposed by Eggler, 1978, and other workers) if H2O can perform a melt polymerizing role. Further investigation of the role of H2O at high pressures is clearly warranted.

C-H fluid—saturated boundary

The Fo–Enss two-phase boundary for saturation with reduced C-H fluids falls between the H2O and the volatile-absent boundaries implying a depolymerizing role for reduced C–H volatiles. The compositions of equilibrium, quench rim and quench crystal pyroxenes for volatile-absent, C-H fluid, H2O and CO2-saturated runs in which Fo and Enss equilibrium crystals coexist are compared in Figures 4A and 4B. The proportion of jadeite component in equilibrium pyroxenes varies with volatile species in the order: CH4–H2 > volatile-absent > CO2 > H2O (circled in Figure 4B). This order is generally retained for quench rims and quench crystals. In the volatile-absent, CO2 and C-H fluid—saturated cases, temperature and hence silica activity (buffered by coexisting Fo and Enss), are of similar magnitude. On this basis, we would interpret differences in pyroxene chemistry as due largely to changes in the activity of network modifying oxides in the liquid. The observed enrichment in pyroxene of the jadeite component under conditions of C–H fluid saturation may, therefore, reflect an increase in the activity of network modifying Na2O and Al2O3 relative to the volatile-absent system.

The results presented here indicate that C-H volatile dissolution leads to network depolymerization accompanied by changes in the activity of network modifying oxides. In order to write a mechanism to describe the dissolution process, however, more detailed information on an atomic or molecular basis is needed than can be supplied by liquidus studies. This requires spectroscopic and analytical data on samples free from contamination as considered below.

SOLUBILITY MECHANISM OF METHANE: ANALYTICAL AND SPECTROSCOPIC CONSTRAINTS

Sodamellelite and jadeite compositions have been chosen for this investigation because their volatile-
Reduced C–H volatiles

free, H₂O and CO₂–containing glasses have been characterized structurally by x-ray diffraction and vibrational spectroscopic methods (e.g., TAYLOR and BROWN, 1979; MYSEN and VIRGO, 1980a; MYSEN et al., 1980; SHARMA and YODER, 1979). In addition, both compositions show good quenching behaviour in the presence of volatiles (MYSEN and VIRGO, 1980a).

Volatile–absent melting of sodamellilite and jadeite at 30 kbar

To determine the magnitude of liquidus depressions in the presence of C–H volatiles the volatile-free melting points of sodamellilite and jadeite are required at 30 kbar. Crystalline sodamellilite is stable above 4–5 kbar and at 10 kbar has a melting interval of ~50°C (YODER, 1964). At 20 kbar, the solidus and liquidus may be regarded as coincident within experimental precision (KUSHIRO, 1964). Experiments at 30 kbar (Table 2) show that crystalline sodamellilite melts congruently at 1380 ± 10°C. Jadeite melts congruently to liquid at 1370 ± 10°C, 30 kbar (BELL, 1964).

C–H saturated melting at 30 kbar

Results of the melting experiments at 30 kbar are listed in Table 2. Product glasses are clear and graphite-free. Interaction of C–H fluids and silicate melts leads to liquidus depressions of ~40°C in sodamellilite and at least 50°C in jadeite. This observation together with the consistently low electron microprobe totals reported in Table 2 implies a significant solubility of a reduced volatile component or components. All experimental charges retain excess carbide and mass spectra of quenched vapor indicate the presence of only trace quantities of bulk oxygen as H₂O. Thus the observed effects cannot be ascribed to absorbed H₂O or other external sources of oxidation.

In some experiments, small blebs of Pt–Si alloy were occasionally observed at the Pt capsule/silicate interface. This could be a potential source of oxygen (and hence H₂O) via the reaction:

\[x\text{SiO}_2(\text{melt}) + y\text{Pt}(\text{capsule}) \rightarrow x\text{Si}_x\text{Pt}_y(\text{alloy}) + x\text{O}_2, \quad 0 < x, y < 1. \]

Electron microprobe analyses for silica (see Table 2), however, show no detectable Si loss to a Pt–Si alloy within analytical error: compare 46.5 weight percent SiO₂ in the sodamellilite starting material with 46.3 weight percent (std deviation 0.4) found in the C–H saturated glass (total normalized to 100%). The amount of oxygen (expressed in the form of dissolved H₂O) that could enter a sodamellilite melt by this process and remain undetected by silica analysis is <0.4 weight percent H₂O.

Under C–H fluid excess conditions the liquidus phase for the sodamellilite composition is grossular and not crystalline sodamellilite as observed under volatile–absent conditions. This observation is consistent with the early appearance of garnet on the liquidus of the C–H volatile—saturated Di₃₃Py₆₅ composition (EGGLER and BAKER, 1982). Combined with the results in the system Ne–Fo–Q these observations suggest that, in general, liquidus phases of higher octahedral aluminum content are favored by C–H fluid dissolution.

Spectroscopic results

Fourier Transform infrared (FTIR) spectra of sodamellilite and jadeite glasses are presented over

Figure 5. FTIR spectra (4000–400 cm⁻¹): A. Volatile-free jadeite glass (quenched at 1 bar); B. C–H fluid—saturated jadeite glass (T–1296); C. Volatile–free sodamellilite glass (quenched at 30 kbar); D. C–H fluid—saturated sodamellilite glass (T–1341); E. Sodamellilite glass reduced by interaction with silicon carbide at 1500°C, 30 kbar (see text); F. Hydrous sodamellilite glass (T–1250). Weak positive or negative bands near 2350 cm⁻¹ are due to atmospheric CO₂ vapour.
the ranges 4000–400 cm⁻¹ and 1500–400 cm⁻¹ in Figures 5 and 6. For jadeite, comparisons have been made between C–H fluid–saturated glass quenched from 30 kbar, 1320°C and the 1 bar volatile–absent jadeite glass. Such comparisons are valid because the Raman study of MYSEN et al. (1980) has shown that the spectroscopically resolvable structure of quenched jadeite melt remains essentially unaffected by pressure up to at least 38 kbar. For sodamellilitite, the volatile–free glass used for comparison was quenched from 30 kbar, 1395°C. The following features distinguish spectra of the C–H fluid saturated glasses (Figs 5B, D and 6C, G) from the volatile–free glasses (Figures 5A, C and 6B, F):

High–frequency region 4000–1400 cm⁻¹

A broad, asymmetric O–H stretch band centered at ~3580 cm⁻¹ is the most prominent feature in the high–frequency region. Comparison of O–H peak areas with hydrous sodamellilitite glass (Figure 5F) containing 5.5 ± 0.2 weight percent H₂O gives an estimated dissolved hydrogen content equivalent to 2.7 ± 0.3 weight percent H₂O (if all H is derived from CH₄ then this would correspond to a methane solubility of ~1 weight percent). The area under the O–H envelope in C–H fluid—saturated jadeite suggests a similar dissolved OH content. There are no absorption bands at ~2900 cm⁻¹ that could be ascribed to C–H bond stretching in dissolved molecular methane or other hydrocarbon groups such as –CH₃ or –CH₂–. No absorptions appear in the frequency range 2600–1700 cm⁻¹. A weak band appears at ~1630 cm⁻¹ (ν₂ H–O–H bending vibration) due to the presence of dissolved molecular H₂O (STOLPER, 1982). There is no evidence for dissolved carbonate which has a characteristic absorption band or bands at ~1600–1380 cm⁻¹.

Aluminosilicate envelopes 1200–400 cm⁻¹

Changes occur in both the high–frequency and mid-range envelopes (centered at ~1000 cm⁻¹ and ~700 cm⁻¹ respectively) and in the spectral region near 570 cm⁻¹. These changes reflect structural rearrangements in the aluminosilicate network that result from volatile dissolution. They are more clearly illustrated in difference spectra (volatile–saturated minus volatile–absent glasses) presented in Figure 7. Strong positive features appear at

1250). The doublet at 1500–1400 cm⁻¹ is due to trace dissolved carbonate; E. Crystalline jadeite (prepared at 25 kbar); F. Volatile–free jadeite glass (quenched at 1 bar); G. C–H fluid—saturated jadeite glass (T–1296).
Reduced C-H volatiles

The prominent 570 cm\(^{-1}\) band is present in the FTIR difference spectrum of hydrous sodamelilite glass (Figure 7F) and therefore may be ascribed to changes in the aluminosilicate network resulting from OH dissolution. Bands in this region in the Raman spectra of aluminosilicate glasses have usually been assigned to in-plane Si-O-Si bridge bending motions or to the presence of 3- or 4-membered ring structures (McMillan, 1984). However, in the 500–600 cm\(^{-1}\) region in the infrared Tarle (1965, 1967), Farmer et al. (1979) and Serna et al. (1979) have assigned strong absorption bands in aluminosilicate glasses, crystals and gels to vibrations of AlO\(_6\) polyhedra. While such an assignment will require confirmation (perhaps using more definitive techniques such as solid-state NMR), Taylor (1985) noted that strong IR bands in the 620–520 cm\(^{-1}\) region are found in all crystalline aluminosilicates containing AlO\(_6\) polyhedra.

Positive difference features related to OH dissolution

Figure 7. Difference spectra (1500–400 cm\(^{-1}\)) (component-bearing) minus (component-absent): A. (C-H fluid—saturated jadeite glass T-1296) minus (1 bar volatile–free jadeite glass); B. Same as A but duplicate KBr discs were used to record both component-bearing and component-absent spectra (reproducibility check); C. (C-H fluid—saturated sodamelilite glass T-1341) minus (30 kbar volatile–free sodamelilite glass); D. (SIC reduced sodamelilite glass) minus (30 kbar volatile–free sodamelilite glass) [the “reduced component”]; E. (C-H fluid—saturated Ne\(_{99}\)Fe\(_{0.3}\)Q\(_{20}\) glass containing ~10% enstatite crystals: run T-1289) minus (Ne\(_{99}\)Fe\(_{0.3}\)Q\(_{20}\) 1 bar glass); F. (Hydrous sodamelilite glass T-1250) minus (30 kbar volatile–free sodamelilite glass) [the “oxidized component”].
but are absent in structurally related minerals lacking Al or in those containing only AlO4 polyhedra (exceptions are minerals based on small ring framework structures such as the feldspars or scapolites). This is illustrated (Figures 6A & 6E) in the spectra of crystalline jadeite (NaAlSi2O6, strong band at 595 cm⁻¹) and sodamellite (NaCaAlSiO7, no strong absorptions 620–520 cm⁻¹). The weaker 950 and 740 cm⁻¹ features identified in the C–H fluid—saturated glasses are also present in the hydrous glass and could be due, respectively, to Si–OH stretching (MYSEN and VIRGO, 1980a) and vibrations of Al–O–Al linkages in aluminate condensates or “clusters” (TARTE, 1967; SERNA et al., 1977).

850–800 cm⁻¹ positive difference feature

The ~850–800 cm⁻¹ feature is located on the low–frequency limb of the high–frequency envelope in jadeite, sodamellite and Ne–Fe–Q glasses. This band is not present in hydrous sodamellite glass and therefore is unlikely to be associated with OH dissolution or network depolymerization. Instead, this band is characteristic of reduced C–H volatile dissolution and may be due to a dissolved reduced component. Spectroscopic identification of such a component in aluminosilicate glasses is verifiable experimentally as discussed later. Possible assignments for the 850–800 cm⁻¹ feature are considered below after applying necessary theoretical constraints.

Theoretical constraints

Mechanisms for the dissolution of reduced volatiles in silicate melts have been suggested by very few authors. In a study that investigated the solubility behaviour of CO as a CO₂–CO volatile mixture, EGGLER et al. (1979) suggested that CO dissolves by a carbonation reaction of the type:

\[CO + 2O^- = CO_2^- \cdot \cdot \cdot A \]

where “O⁻” = non-bridging oxygen. EGGLER and BAKER (1982) proposed two mechanisms for CH₄ dissolution based on analogous reactions for H₂O, i.e.

\[4\text{Si–O–Si} + \text{CH}_4 = 4\text{Si–OH} \cdot \cdot \cdot \cdot B \]

\[\text{Si–O–Si} + \text{CH}_4 = \text{Si–CH}_3 + \text{Si–OH} \cdot \cdot \cdot \cdot C \]

The validity of mechanisms A and B is, however, questionable because neither reaction can be correctly charge-balanced (at least in a chemically realistic sense in Equation A, “O⁻” cannot be equated with NBO for usual oxidation states of oxygen in silicate melts). Because electroneutrality should always be obeyed when balancing any chemical reaction, it is evident that if a reduced volatile dissolves in a silicate melt to give an “oxidized bond” such as O–H or O–C, then this must be balanced at equilibrium by concurrent production of a “reduced bond.” Such a bond is one involving an element in a lower oxidation state or one excluding oxygen or both. Candidates in the case of a C–H fluid could include: Si–H, Si–C, C–H, Si–Si and analogous bonds involving Al and other metal cations.

Reference to the FTIR spectra of sodamellite and jadeite C–H fluid–saturated glasses immediately eliminates metal–hydrogen or C–H bonds as candidates for the “reduced bond.” This is because bonds of this type have characteristic IR stretching frequencies in the range ~3000–1700 cm⁻¹ where no absorption was noted. C–H bonds are expected at 3050–2850 cm⁻¹ and Si–H bonds at 2250–2100 cm⁻¹ (POUCHERT, 1981). Thus reaction C, suggested by EGGGLER and BAKER (1982), while being properly charge balanced and involving Si–C and C–H as reduced bonds, is not consistent with observed spectroscopic results.

Possible mechanisms of C–H volatile dissolution

The theoretical and spectroscopic constraints discussed above, greatly limit the choice of a reduced component. We suggest that the most likely candidates are either (I) a network unit containing Si–C bonds or (II) a non-stoichiometric network component containing units having an O/Si ratio less than 2, such as found in amorphous silicon monoxide. The former alternative implies that only hydrocarbon species (i.e., dominantly CH₄) are involved in the dissolution process, whereas the latter alternative is a general reduction of the silicate network and could involve H₂ as well as CH₄. Support for candidate (I) is given by the known range of IR active Si–C bond stretching frequencies for molecular compounds (WELTNER and McLEOD, 1964; POUCHERT, 1981) e.g., organosilicon compounds (Si–CH₃ bonds): 680–740 cm⁻¹; matrix-isolated SiC₂ and SiC molecules: 835 and 1226 cm⁻¹ respectively. The range ~700 cm⁻¹ to 1226 cm⁻¹ encompasses the region that includes the strongest difference spectrum features at ~850–800 cm⁻¹. However, these features would also be consistent with the presence of silicon monoxide or related units. Compared with pure silica glass, the high–frequency envelope in amorphous silicon monoxide is shifted down frequency by some 100 cm⁻¹ (PLISKIN and LEHMAN, 1965; KHANNA et al., 1981). A similar shift in band components in aluminosilicate
Reduced C-H volatiles would be sufficient to extend the high-frequency envelope to lower wavenumbers and hence result in the observed \(\sim 850-800 \text{ cm}^{-1} \) positive difference features.

Mechanisms (I) and (II) may be described by the following balanced equations (for [SiO\(_3\)]\(^2-\) and sodamelilite melt-units):

Mechanism I: (Silicon–carbon bond formation)

\[
\begin{align*}
2\text{[SiO}_3\text{]}\text{[SiO}_3\text{]}^2- + \text{CH}_4 & = \{\text{Si–C}\} + 4\text{[OH]}^- + \text{[SiO}_2\text{]}^0 \quad (6) \\
2\text{[Al}^\text{IV}\text{Si}_2\text{O}_7\text{]}^3\text{[SiO}_3\text{]}^2- + \text{CH}_4 & = 2\text{[Al}^\text{NNO}_2\text{]}^- + 4\text{[OH]}^- + \{\text{Si–C}\} + 3\text{[SiO}_2\text{]}^0 \quad (7)
\end{align*}
\]

Mechanism II: (Network reduction by CH\(_4\) or H\(_2\), or both)

\[
\begin{align*}
2\text{[SiO}_3\text{]}\text{[SiO}_3\text{]}^2- + \text{CH}_4 & = 2\{\text{Si–O}\} + 4\text{[OH]}^- + \{\text{C}^0\} \quad (8) \\
2\text{[Al}^\text{IV}\text{Si}_2\text{O}_7\text{]}^3\text{[SiO}_3\text{]}^2- + \text{CH}_4 & = 2\text{[Al}^\text{NNO}_2\text{]}^- + 2\{\text{Si–O}\} + 2\text{[SiO}_2\text{]}^0 \quad (9) \\
\text{[SiO}_3\text{]}\text{[SiO}_3\text{]}^2- + \text{H}_2 & = \{\text{Si–O}\} + 2\text{[OH]}^- \quad (10) \\
\text{[Al}^\text{IV}\text{Si}_2\text{O}_7\text{]}^3\text{[SiO}_3\text{]}^2- + \text{H}_2 & = \text{[Al}^\text{NNO}_2\text{]}^- + 2\text{[OH]}^- + \{\text{Si–O}\} + \text{[SiO}_2\text{]}^0 \quad (11)
\end{align*}
\]

where
- \(\{ \} \) = unidentified location in silicate network
- \([\} \) = melt-unit or complex
- \(\{\text{C}^0\} \) = graphite, diamond or carbon dissolved in the melt in unspecified form
- \(\text{NN} \) = Al in non–network sites (e.g., AlO\(_6\) polyhedra).

For both mechanisms additional equilibria can be written to relate spectroscopically observed species such as dissolved molecular water:

\[
\text{[SiO}_2\text{]} + 2\text{[OH]}^- = \text{[H}_2\text{O]}\text{molecular} + \text{[SiO}_3\text{]}^2- \quad (12)
\]

Mechanisms (I) and (II) are similarly constructed; both reactions produce 4 moles of O–H bonds (the “oxidized component”) per mole of dissolved methane. For the sodamelilite melt-unit, the solution process is written to accommodate a redistribution of Al between network and non–network sites. The major difference between the mechanisms is in the nature of the reduced bond formed (i.e., the “reduced component”). In mechanism (I), a significant melt-phase solubility of reduced carbon as Si–C bonds is implied. This mechanism is directly analogous to the structural role of nitrogen in Na\(_2\)O–CaO–silicon oxynitride glasses recently investigated by BROX and PANTANO (1984). Based on FTIR and x-ray photoelectron spectroscopic results those authors concluded that nitrogen is present in the silicate network of oxynitride glasses in the form of Si–N bonds with N in three-fold and possibly two-fold co–ordination sites. With increasing N content the principle changes in the FTIR spectra are seen in the high–frequency envelope which broadens and shifts to lower wavenumbers (similar to that observed in the C–H fluid—saturated glasses). The maximum amount of nitrogen dissolved in the Na\(_2\)O–CaO–silicon oxynitride glasses at 1 bar was \(\sim 2.2 \) weight percent N but the effects of N substitution on the network are clearly seen in the FTIR spectrum at much lower levels.

Mechanism (II) requires the presence of a silicate network unit with an O:Si ratio <2; this is represented in Equations E and F by a \{SiO\} or “silicon monoxide” group. It is conceivable that such units might resemble those found in amorphous silicon monoxide. The RDF study of YASAITIS and KAPELOW (1972) favors a structure for this compound based on puckered \((\text{SiO})_n\) rings where the average co–ordination number about each Si atom does not deviate significantly from two. Such a structure gives each Si atom a formal valency of II.

Characterization of the “reduced component”

For the sodamelilite composition the “reduced component” was characterized spectroscopically by reducing the silicate network at high pressure under anhydrous conditions. The starting material consisted of sodamelilite glass in which a portion of the SiO\(_2\) was substituted by \(-\text{SiC} \) [total C = 1.5 weight percent, equivalent to a methane solubility of 2 weight percent via mechanism (I)]. An inner graphite capsule was used to separate the silicate/carbide mix from the outer Pt capsule to prevent Pt-Si alloy formation. Over a run time of 90 min at 30 kbar and 1500°C, SiC was fully decomposed producing a product consisting of clear glass and disseminated graphite. This experiment does not distinguish between mechanisms (I) and (II) because SiC may dissolve to form reduced Si–C bonds or may reduce the silicate network directly via the reaction: \(\text{SiC} + \text{SiO}_2 \rightarrow 2\{\text{SiO}\} + \text{C} \) [analogous to mechanism (III)]. FTIR spectra are shown in Figures 5E and 7D. Graphite is essentially IR inactive over this spectral range and does not contribute to the observed bands. The difference spectrum Figure 7D has a major positive feature at 806 cm\(^{-1}\) and weaker features at 1023 and 642 cm\(^{-1}\) corresponding closely
to those present in C-H fluid—saturated sodalilite. In fact a combination of the hydrous sodalilite glass difference spectrum (the “oxidized component”) and Figure 7D would be almost indistinguishable from the C-H fluid—saturated spectrum. Thus separate “reduced” and “oxidized” components can be characterized spectroscopically; the latter is associated with O–H bond formation and the former is best interpreted as a reduction of the silicate network. Whether or not this reduction involves formation of reduced bonds to carbon must be decided by analytical means.

Analytical constraints

Results of pyrolysis/gas chromatography analyses for C and H for both samples and standards are presented in Table 1. The analysed carbon contents of the standards (SiO₂–SiC mixtures) are between half and one third of the known amounts present. This suggests incomplete oxidation of SiC has occurred with greatest discrepancy occurring at C contents >0.5 weight percent. Carbon values for the glass unknowns must therefore be regarded as minimum quantities only; if α–SiC forms metastably in these samples then analyses may be low by as much as a factor of two for total C contents ≤0.5 weight percent. Hydrogen analyses (converted to weight percent H₂O) are in good agreement with those deduced spectroscopically for sodalilite. C–H fluid equilibrated glasses therefore contain a minimum of ~1000 ppm C and a maximum of ~2000 ppm C. These results are confirmed by quantitative and semi–quantitative electron microprobe analyses for carbon (Table 3). Carbon contents in the C–H fluid—saturated glasses are near or below the limit of detection (<2000 ppm) consistent with the gas chromatographic analyses.

For mechanism (I) to operate a reduced carbon solubility of 8000–12000 ppm is required. Thus mechanism (II) is supported as the dominant process for reduced volatile interaction with aluminosilicate melts. The small amount of carbon detected could dissolve either by mechanism (I) or perhaps in the form of atomic carbon occupying interstitial sites or cation vacancies as suggested Freund et al. (1980) for oxide and silicate lattices. Carbon dissolved in this manner would be undetectable by IR and Raman spectroscopic methods.

DISCUSSION

The recognition of mechanism (II) as the dominant process of C–H volatile solubility does not discriminate between the particular reduced volatile species involved. The mechanism is a general reduction of the silicate network that may take place in the presence of any of the reduced volatiles H₂, CH₄ or C₂H₆. In the presence of CH₄-rich fluids the H/C ratio of the melt phase greatly exceeds H/C of the coexisting fluid suggesting that reduced C–H volatile solubility will largely be a function of fH₂ and governed by equilibria similar to F above [Equations (10) and (11)]. In the system aluminosilicate–C–O, carbon monoxide is an important reduced volatile at P < 20 kbar and is believed to dissolve in melts by a carbonation reaction (Eggerl et al., 1979). Charge balance constraints dictate a solubility mechanism that must involve a reduced component and we can propose reactions analogous to Equations E and F to describe CO dissolution, e.g.,

$$\text{CO} + [\text{SiO}_3]^{2-} = \text{CO}_2 + \{\text{Si-O}\}.$$ (12)

If carbonate ions and a reduced melt component such as [SiO] cannot coexist stably in silicate melts, there are real difficulties in proposing CO as a melt–soluble species other than in molecular form. Choice of mechanism (II) also helps rationalize the experimental results of Luth and Boettcher (1986) which show that H₂ gives rise to significant depressions of the albite and diopside solidi implying a strong interaction between H₂ and aluminosilicate liquids as predicted by model F above.

Liquidus phase relations in the system Ne–Fo–Q suggest that dissolution of a C–H fluid, compared to the volatile–absent case, raises melt activities of network modifying Al₂O₃. This is in accord with the observed expansion of the garnet phase volume in other systems. The idea that carbon–rich eclogites could be the products of fractional crystallization of mantle melts under conditions of CH₄–H₂O–H₂ volatile saturation as proposed by Eggerl and Baker (1982) is supported by the data presented here. Kushiro and Yoder (1974) stated that “... in the presence of water ... it should be possible for eclogite to form from garnet lherzolite” at depths
greater than the 26 kbar limit in the volatile–absent case, i.e., to within the stability field of diamond. Because both H2O and CH4–H2 fluids have similar melt depolymerizing behaviour, the findings of Kushiro and Yoder (1974) will apply equally well to CH4–H2O–H2 volatile mixtures as to pure H2O. The added advantage in the case of carbon–rich eclogites is that the preference of the melt for H compared with C will drive a coexisting CH4–bearing fluid phase toward carbon saturation leading to precipitation of diamond or graphite via equations similar to E. This is in accord with the origins of graphite-diamond eclogite from the Roberts Victor kimberlite as discussed by Hatton and Gurney (1979). Those authors propose an origin based on rapid crystallization of melts produced by volatile–induced partial melting of garnet lherzolite where melt volumes are such that gravitational separation of diamond or graphite is ineffective. Whereas the authors propose that carbon is a result of reduction of a CO2–bearing vapor during cooling, an alternative mechanism in which CH4–H2O–H2 fluids give rise to melting accompanied by carbon precipitation from the fluid phase can equally well explain the origin of these rocks.

The finding that the network portion of silicate melts is quite susceptible to reduction via formation of groups with O/Si < 2, has not been demonstrated previously. For the observed H2O content of C–H fluid–saturated sodamellilitie glass at 30 kbar, 1350°C, we calculate that ~20% of the Si should be present as Si(II) (equivalent to 6–7 weight percent SiO) by mechanism (II). Reduced systems such as the enstatite chondrite group of meteorites have intrinsic oxygen fugacities that lie below IW. Measured values for the equilibrated EL enstatite chondrite group give fO2’s in the range ~IW–3 to IW–4 log fO2 units (Brett and Sato, 1984; Walter and Doan, 1969), near the redox conditions of the present C–H fluid experiments. In these rocks Si is distributed amongst three phases: metal (kamacite with ~1–4 weight percent Si), silicate (mainly enstatite), and silicon oxynitride (sinoite, Si3N2O2) with graphite and not silicon carbide as an important accessory (Sears et al., 1982). This solid phase distribution of Si redox environments (at least at relatively low pressures) is consistent with the interpretation of C–H fluid–equilibrated aluminosilicate glasses where a reduced silicate network plus elemental carbon is evidently more stable than the equivalent melt structure containing Si–C bonds. It is possible to express the relationship between solid phases and a corresponding melt at fO2 ~ IW–4 × log fO2 units via a disproportionation equilibrium of the type:

\[2[Si^{2+}O_x]_{\text{silicate melt}} = (2 - x)[Si^0]_{\text{metallic}} + x[Si^{4+}O_2]_{\text{silicate}} \]

where 1 < x < 2.

In view of recent hypotheses supporting the early incorporation of large amounts of reduced enstatite chondritic components into the Earth’s mantle (Smith, 1982; Javoy and Pineau, 1983; Ito et al., 1984) such equilibria are expected to have an important bearing on the mantle–core segregation of Si.

SUMMARY

In this investigation, a mechanism for C–H volatile solubility in aluminosilicate melts has been proposed from the interpretation of FTIR spectra within theoretical and analytical constraints. The mechanism is supported by phase relations determined in the system Ne–Fo–Q–C–O–H which indicates a melt depolymerizing role for C–H fluids.

On spectroscopic and theoretical grounds reduced C–H volatile dissolution can be resolved into soluble oxidized and reduced components. The former is represented by O–H bonds (as hydroxyl groups and molecular water) and affects melt structure much in the manner of H2O dissolution. There is no spectroscopic evidence for the presence of dissolved molecular CH4 or carbonate. The reduced component is somewhat enigmatic. Analytical data establish that the reduced component is consistent with a network silicon-oxygen unit where the formal valency on silicon is reduced from IV to II (O:Si stoichiometry of the system <2). At the fO2 conditions of these experiments, ~IW–4.5 log fO2 units, a general reduction of the silicate network is evidently favored over formation of Si–C bonds. This is not the case, however, in analogous reduced systems containing nitrogen where Si–N bonding in silicon oxynitride glasses is well characterized. Nevertheless, the reduced carbon solubility in the aluminosilicate melts studied is ~1000 ppm (minimum) in a form yet to be characterized.

These results have been used to (1) propose solubility mechanisms for other reduced volatiles such as CO; (2) help rationalize the observed strong interaction between H2 and silicate melts; (3) suggest an alternative interpretation for the origin of carbonaceous eclogites as the product of CH4–H2O fluid-induced partial melts of garnet lherzolite; (4) suggest a mechanism for mantle–core partitioning of Si and (5) provide a basis for investigating the nature of melting in a reduced mantle as discussed in the accompanying paper by Green et al. (1987).
Acknowledgements—We are grateful to Dr. B. J. Griffin (University of Adelaide) for much time spent at the microprobe analysing our samples for carbon. We thank J. Bignell, N. Davis, W. Jablonski and K. L. Harris for invaluable technical assistance. This study was supported financially by a Commonwealth Postgraduate Scholarship and Australian National Research Fellowship awarded to WRT and an ARGs grant to DHG.

REFERENCES

MYSEN B. O. and VIRGO D. (1980c) Solubility mecha-

APPENDIX

Experimental results along the join $\text{Ne}_{35}\text{Fo}_{45}-\text{Ne}_{35}\text{O}_{45}$ $P = 28$ kbar

VOLATILE-ABSENT

<table>
<thead>
<tr>
<th>Run number</th>
<th>Weight percent</th>
<th>Duration (min.)</th>
<th>T (°C)</th>
<th>Approx. % Cryst.</th>
<th>Products*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1210**</td>
<td>25</td>
<td>15</td>
<td>1440</td>
<td>40</td>
<td>Fo, Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1213**</td>
<td>25</td>
<td>10</td>
<td>1500</td>
<td>—</td>
<td>Liq, Qx</td>
</tr>
<tr>
<td>T-1215**</td>
<td>25</td>
<td>10</td>
<td>1475</td>
<td>30</td>
<td>Fo, Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1218**</td>
<td>25</td>
<td>12</td>
<td>1490</td>
<td>10</td>
<td>Fo, Liq, Qx</td>
</tr>
</tbody>
</table>

H$_2$O-SATURATED (\sim30 Weight percent H$_2$O added as liquid)

<table>
<thead>
<tr>
<th>Run number</th>
<th>Weight percent</th>
<th>Duration (min.)</th>
<th>T (°C)</th>
<th>Approx. % Cryst.</th>
<th>Products*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1175</td>
<td>18</td>
<td>60</td>
<td>1100</td>
<td>5-10</td>
<td>Fo, Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1237</td>
<td>14</td>
<td>60</td>
<td>1040</td>
<td>20</td>
<td>Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1304</td>
<td>20</td>
<td>60</td>
<td>1100</td>
<td>5</td>
<td>Fo, Liq, Qx</td>
</tr>
<tr>
<td>T-1305</td>
<td>16</td>
<td>60</td>
<td>1060</td>
<td>10</td>
<td>Opx, Liq, Qx</td>
</tr>
</tbody>
</table>

CO$_2$-SATURATED (\sim15 Weight percent CO$_2$ generated from $\text{Ag}_2\text{C}_2\text{O}_4$)

<table>
<thead>
<tr>
<th>Run number</th>
<th>Weight percent</th>
<th>Duration (min.)</th>
<th>T (°C)</th>
<th>Approx. % Cryst.</th>
<th>Products*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1226</td>
<td>30</td>
<td>12</td>
<td>1390</td>
<td>10</td>
<td>Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1227†</td>
<td>35</td>
<td>12</td>
<td>1390</td>
<td>—</td>
<td>Fo, Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1334</td>
<td>37</td>
<td>12</td>
<td>1400</td>
<td><2</td>
<td>Fo, Liq, Qx, Qcarb</td>
</tr>
</tbody>
</table>

C-H FLUID—SATURATED (\sim7 Weight percent CH$_4$ generated from $\text{Al(OH)}_3/\text{Al}_4\text{C}_3$ mix)

<table>
<thead>
<tr>
<th>Run number</th>
<th>Weight percent</th>
<th>Duration (min.)</th>
<th>T (°C)</th>
<th>Approx. % Cryst.</th>
<th>Products*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1174</td>
<td>18</td>
<td>25</td>
<td>1280</td>
<td>25</td>
<td>Opx, Liq, Qx, Fo (tr)</td>
</tr>
<tr>
<td>T-1208</td>
<td>25</td>
<td>20</td>
<td>1350</td>
<td>30</td>
<td>Fo, Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1284</td>
<td>22</td>
<td>20</td>
<td>1380</td>
<td>20</td>
<td>Fo, Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1289†</td>
<td>20</td>
<td>25</td>
<td>1380</td>
<td>10</td>
<td>Opx, Liq, Qx</td>
</tr>
<tr>
<td>T-1291</td>
<td>20</td>
<td>25</td>
<td>1360</td>
<td>20</td>
<td>Opx, Fo, Liq, Qx</td>
</tr>
<tr>
<td>T-1315</td>
<td>22</td>
<td>30</td>
<td>1395</td>
<td>5</td>
<td>Fo, Liq, Qx</td>
</tr>
</tbody>
</table>

* Fo = forsterite; Opx = enstatite s.s.; Liq = glass; Qx = quench crystals; Qcarb = quench carbonate; tr = trace.
† Liquid composition obtained (see below).
†† FTIR spectrum and difference spectrum obtained (see Figure 7).

Liquid Compositions (Weight percent)

<table>
<thead>
<tr>
<th>Oxide</th>
<th>T-1213</th>
<th>T-1218</th>
<th>T-1215</th>
<th>T-1210</th>
<th>T-1227*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>54.01</td>
<td>54.39</td>
<td>54.55</td>
<td>54.52</td>
<td>48.81</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>19.85</td>
<td>21.51</td>
<td>22.79</td>
<td>23.19</td>
<td>22.93</td>
</tr>
<tr>
<td>MgO</td>
<td>14.28</td>
<td>11.03</td>
<td>8.81</td>
<td>8.19</td>
<td>14.32</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>11.86</td>
<td>13.07</td>
<td>13.85</td>
<td>14.10</td>
<td>13.94</td>
</tr>
<tr>
<td>Fe</td>
<td>24.9 (25)†</td>
<td>19.3</td>
<td>15.4</td>
<td>14.3</td>
<td>25.0</td>
</tr>
<tr>
<td>Ne</td>
<td>55.3 (55)</td>
<td>59.9</td>
<td>63.5</td>
<td>68.6</td>
<td>63.9</td>
</tr>
<tr>
<td>Q</td>
<td>19.8 (20)</td>
<td>20.8</td>
<td>21.1</td>
<td>21.1</td>
<td>11.1</td>
</tr>
</tbody>
</table>

* Liquid projected back into Na/Al = 1 plane from average quench pyroxene: En$_{35}$Mg$_{30}$Js$_{15}$ (mol percent).
† Expected composition in brackets.