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Abstract-Crystallization in magmas depends on the crystallization kinetics as well as on the thermal
regime. A dimensional analysis is presented which allows a simple understanding of the characteristics
of crystallization. Characteristic scales for the rates of nucleation and crystal growth are used, denoted
by 1mand Ymrespectively. The time-scale is given by Tc = (Y~Jm)-1/4,and is close to the time required
for crystaIlization to start in supercooled magma. The crystal size scaleswith (Ym/lm)I/4,which provides
a powerful constraint on the values of the nucleation and growth rates. The influence of the form of
the kinetic functions for nucleation and growth is investigated. The form of the growth function
relatively unimportant, in contrast to that of the nucleation function. In natural conditions following
magma emplacement in cold country rocks, temperatures are continuously changing. Local scaling
laws apply, whatever the boundary conditions are, with the characteristic time and crystal size given
by T = (y3 I)-1/4and R = (Y/ 1)1/4,where Yand I are the local rates. T is the time to achieve crystaIlization
and R the mean crystal size in a given piece of magma, and Yand I are the rates at which crystals
were nucleated and grown locally. From petrological observations and laboratory crystallization ex-
periments, the time-scale at high undercoolings is 2 X 105 sec. This gives the characteristic time for
crystaIlization near the margins of intrusions. The time-scale is closeto 108 secin equilibrium conditions
prevailing in the interior of large magma chambers. These can be compared to the characteristic
times for cooling by conduction and convection. Several regimes are defined, depending on the
intrusion dimensions. This allows a classification based on the average crystal size which agrees with
petrological observations. The detailed study of dikes, sills and igneous complexes of different di-
mensions will allow constraints on poorly known conditions and parameters, such as the nucleation
rate at small undercoolings.

INTRODUCTION ing rate determines which phase nucleates first. The
consequence is that the internal differentiation of

IN NATURE,magmatic crystallization proceeds in magma bodies may not follow equilibrium paths,
continuously evolving conditions, with both the which presents an obvious problem when inter-
melt temperature and composition changing. In preting petrological observations. MORSE(1980, p.
large magma chambers, the end result is extremely 229) and others (KIRKPATRICK,1983; BAKERand
complex, and the igneous record is difficult to de- GROVE,1983)have recognized the petrological im-
cipher. Most studies so far have relied on equilib- plications.
rium phase diagrams (MORSE,1980)and on various To estimate cooling rates in natural conditions,
dynamical processes such as thermal and compo- a common practice is to use simple thermal models
sitional convection (HESS, 1960; JACKSON,1961; such as those by JAEGER(1968) and then to evaluate
WAGERand BROWN,1968; MORSE,1969; IRVINE, the consequences for dynamic crystallization. What
1974; McBIRNEY and NOYES, 1979; KERR and is seldom recognized is that the kinetics themselves
TAlT, 1986). The influence of the crystallization ki- influence the cooling rate because the thermal evo-
netics generally has been overlooked, despite a lution is determined not only by the heat loss
growing number of dynamic crystallization exper- mechanism but also by the crystallization rate
iments in the laboratory (GIBB, 1974; WALKERet through the release of latent heat (KIRKPATRICK,
aI., 1976; DONALDSON,1979; GROVEand BENCE, 1976; BRANDEISet al., 1984). The evolution of
1979; LoFGREN,1980; KIRKPATRICKet aI., 1981; crystallization in a magma body depends therefore
TSUCHIYAMA,1983; BAKERand GROVE, 1985). on two factors: the kinetics of crystal nucleation
These studies emphasize that crystals often nucleate and growth, and the cooling regime. The first de-
metastably,andthattheorderofappearanceofdif_ pends on local conditions (temperature) and the
ferent crystalline phases follows that of their re- second on conditions in the whole magma body.
spective ease of nucleation (KIRKPATRICK,1983). Both are poorly known for natural systems, which
They further illustrate two critical facts. One is that prevents the direct interpretation of petrological
nucleation is usually suppressed to undercoolings observations. Only slow progress can be expected
of several tens of degrees. The other is that the cool- in the near future from laboratory crystallization
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experiments for several reasons. One is that it is
difficult to study natural silicate melts with complex
chemical compositions and phase relationships.
Another is that such natural melts take long times
to crystallize. A third reason is that true crystalli-
zation conditions are continuously changing, and
determined by the coupling between cooling and
latent heat release. To proceed towards quantitative
understanding of igneous rocks, one can try an in-
tegrated approach where field data are used to con-
strain poorly known parameters and processes. For
example, if the thermal regime is known, crystal
sizes can be calculated using the crystallization
equations (BRANDEISet al., 1984; BRANDEISand
JAUPART,1986a). Comparisons with field data can
then be used to calibrate the crystallization kinetics.
On the other hand, if the kinetics are known, the
field data can be converted to temperature and
hence yield information on the cooling regime.
BRANDEISand JAUPART(l986a) have used the di-
mensional analysis of crystallization equations for
conduction cooling together with crystal size data
from dikes to obtain values for the nucleation and
growth rates. The analysis is valid for thin dikes.
Conduction is not, however, the main mechanism
of heat transport in large magma bodies (SHAW,
1965). In those, convection dominates and changes
the cooling history. Because the efficiency of con-
vection is directly related to the size of the body,
constraints can be obtained by comparing magma
intrusions of different dimensions. For example,
dikes of various thicknesses can be studied and
compared to large magma chambers.

In this paper, we attempt to define the crystalli-
zation behaviour and thermal regime of intrusions
of different dimensions, using constraints from the
distribution of crystal size. Recent advances on how
to model dynamic crystallization and scaling laws
for crystal size variations are summarized. We de-
fine and give plausible values for the characteristic
crystallization time and compare it to the cooling
time for magma bodies of different sizes and chem-
ical compositions. The plan is the following. First,
a brief review of crystallization kinetics is given.
Then, crystallization by conduction at the margin
of a dike is addressed. The influence of different
expressions for the kinetic functions is investigated.
Finally, the various cooling regimes are reviewed
and the thickness range for intrusions discussed.

KINETIC CONTROLS ON CRYSTALLIZATION

The effects of crystallization kinetics on natural
samples are well documented, most notably in lava
flows and mid-ocean ridge pillow basalts where pi-

geonite, the equilibrium liquidus phase, is absent
(BRYAN,1972;BAKERand GROVE,1985). The first
hint at kinetic effects in the petrological literature
came perhaps from WAGER(1959) who recognized
that nucleation could control the abundance of the
different minerai phases that appear in layered ig-
neous complexes. The first specific study on silicate
melts was by GIBB(1974) on Columbia River basalt,
who found that the temperature at which plagioclase
begins to crystallize varies as a function of cooling
rate. Since then, many dynamic crystallization ex-
periments have been made (see references above).
Following common practice in metallurgy, these
are carried out under two different conditions: iso-
thermal (constant temperature) and continuous
cooling (constant cooling rate). The evolution of
the crystallized product is followed as a function of
time, yielding TTT (time-temperature-transfor-
mation) and CT (continuous cooling-transforma-
tion) diagrams respectively (SHEWMON,1969).
There are, unfortunately, no simple relationships
between the two types of experiments on the same
starting material (DONALDSON,1979; TSUCHI-
YAMA,1983). Thus, it is difficult to use them for
extrapolation to natural conditions which are tran-
sient and often out of the range of the laboratory.

Another approach is to study directly the crys-
tallization process by determining the rates of nu-
cleation and growth. Nucleation and growth are
distinct phenomena obeying different rules. In sil-
icate melts, new crystal formation results either from
the presence of foreign material in the melt, such
as impurities or nuclei from a distant source, and
from the fortuitous formation of molecular clusters
of critical size, i.e., nuclei. These are called heter-
ogeneous and homogeneous nucleation respec-
tively. The rates for both phenomena can be ex-
pressed as a function of temperature and under-
cooling following kinetic theory (JOHNSONand
MEHL, 1939; TURNBULLand FISHER,1949). The
general nucleation rate function has a bell-shape,
illustrated in Figure 1 and subsequently called
"shape 1 function". Crystal growth, on the other
hand, requires two steps: solute must be transported
to the crystal surface, a process that is usually con-
trolled by chemical diffusion, and then oriented into
the crystal lattice (attachment) (KIRKPATRICK,
1975; BARONNET,1984). The attachment kinetics
are relativelywellunderstood and the corresponding
growth-rate function also has a bell-shaped curve
(BARONNET,1984), illustrated again in Figure 1. In
reality, when crystals grow large and fast, diffusion
of solute through the melt becomes limiting. Un-
fortunately, there is no simple method to treat dif-
fusion in a crowded environment with many crystals
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FIG. 1. The functions for the rates of crystal nucleation
and growth, expressed as a function of undercooling. The
scales are arbitrary. To define these kinetic functions com-
pletely, the scales 1m and Ymmust be specified. The bell-
shaped curves correspond to standard kinetic theory
(BRANDEIS et al., 1984) and are termed "shape I" func-
tions. "Shape 2" functions are the simplest ones, and are
used to investigate the influence of the shapes of the nu-
cleation and growth curves. In each case, the nucleation
and growth scales, are used for dimensional analysis. For
shape 1 functions, these are the peak rates. In the shape 2
case, the scale is the constant value taken by the function.
Note the delay of nucleation liT, which is the undercooling
range for which nucleation is negligible.

and there is no general expression for the growth
rate function. Under natural conditions, it seems
that the attachment kinetics are the controlling
phenomenon (KIRKPATRICK,1977).

This brief summary probably makes it clear that
there is no obvious theoretical way to specify the
functions for nucleation and growth. The common
practice in industrial crystallizers is to use empirical
expressions derived from experimental data (RAN-
DOLPHand LARSON,1971, p. 110). To this end,
two different steps are required. One is to specify
some characteristic value for the growth and nu-
cleation rates. These will be called the growth and
nucleation scales. The other is to specify the form
of the function. The bell-shaped curves of Figure
1have been determined from standard kinetic the-
ory (BRANDEISet al., 1984). One of the aims of this
paper is to investigate the influence of the kinetic

functions on the crystallization behaviour. This will
define the precision required from experimental
data to allow realistic quantitative models.

Data are available on nucleation and growth rates
in silicate melts. Most experiments show bell-
shaped nucleation and growth curves, and in the
following, we use published values to contrain the
peak rates. The most complete set of measurements
are those by PENN (1977) and SWANSON(1977).
From these, BRANDEISet al. (1984) demonstrated
that the peak nucleation rates had to be between
10-2 and 102 cm? sec'. In a basaltic lava lake,
KIRKPATRICK(1977) estimated values for plagio-
clase ranging from about 10-2to 1cm? sec:'. More
recently, TSUCHIYAMA(1983) obtained a value of
10-2 em'? sec" for diopside in the system
CaMgSiz06-CaAl2Si20s.The total range of possible
values is, therefore, quite large, covering four orders
of magnitude. Data on growth rates are more nu-
merous and have been compiled by DoWTY(1980).
From those, it appears that the growth rate decreases
as the chemical system becomes more complex. For
natural compositions, peak growth rates should be
smaller than 10-7 em sec:". In his natural crystal-
lization experiment, the cooling lava lake, KIRK-
PATRICK(1977) gave values between 10-10 and 10-9
em sec"! for plagioclase. These values were obtained
at small undercoolings and provide lower bounds
for the peak rates. From these considerations, peak
growth rates in silicate systems range from 10-9 to
10-7 em sec:".
There is therefore quite a significant body of ex-

perimental data, showing significant differences
among the various systems. One important question
is to assess whether these differences lead to im-
portant variations in crystallization conditions. This
question will be addressed in this paper. Once the
kinetic functions for nucleation and growth are
specified, it is possible to write the equation for
crystallization involving the coupling between
cooling and latent heat release. The first effort in
the geological literature was by KIRKPATRICK
(1976). However, he made a mathematical error
which prevents reliable results. DoWTY (1980) in-
vestigated the test-case of a fixed rate of heat loss.
He showed that latent heat release is very important
and suppresses large undercoolings, bringing tem-
peratures close to the liquidus even for rates of heat
loss that are high by geological standards. His cal-
culations give useful insights into the crystallization
behaviour of silicate melts, but do not take into
account the coupling with heat flowthrough country
rocks and the continuous evolution of heat loss
conditions as crystallization proceeds. Following
these studies, BRANDEISet al. (1984) tackled the
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full problem and presented solutions for conduction
cooling in a variety of cases. BRANDEISand JAU-

PART (1986a) later made a dimensional analysis of
the same equations. In this paper, we summarize
their results and investigate the consequences for
the cooling regimes of magma bodies of different
dimensions. In return, these considerations will al-
low constraints on the nucleation and growth rates.

DIMENSIONAL ANALYSIS FOR
CRYSTALLIZATION

We consider a problem in one dimension only
(z), perpendicular to the contact between magma
and surrounding rocks. It is assumed that heat
transfer is dominated by conduction, which is valid
in boundary layers close to rigid boundaries (roof,
floor and side-walls). The heat equation is written:

iJT/iJt = KiJ2T/iJz2 + L/ciJif>/iJt (1)

where cp is the isobaric heat capacity, K thermal
diffusivity, T temperature, t time and L the latent
heat per unit mass. K is thermal diffusivity. if> is the
crystal content per unit volume and takes values
between 0 and 1. iJif>/iJt depends on the rates of
nucleation and growth according to the equation
(KIRKPATRICK, 1976):

iJif>/iJt= 411'[1- if>(z, t)]Y(t) f I(v)

x[f Y(U)dUfdV. (2)

I and Yare the rates of nucleation and growth, re-
spectively, and tv is time of nucleation.

We consider the simplest cooling experiment. At
time t = 0, magma with initial temperature TL (the
liquidus) is emplaced in country rocks that are
colder by an amount I1T. The initial conditions are
that both magma and country rock are initially iso-
thermal:

T(z, 0) = TL for z> 0 (magma) (3a)

T(z, 0) = TL -I1T

for z -c O (country rocks). (3b)

The boundary conditions are:

T(+oo,t) = TL

T(-oo, t) = TL -I1T.

Note that these boundary conditions are specified
at infinity. In practice, the magma body is of finite
dimensions. This is not limiting for short times be-
cause conduction propagates slowlyand only affects

a boundary layer that advances into uncrystallized
magma. The main limitation of these equations is
the conduction approximation, which will be dis-
cussed later.

The physical properties (K, cp) are assumed to be
constant. The temperature scale is I1T, and the
scales for the rates of nucleation and growth are
denoted by 1m and Ym- A time-scale appears when
Equation (2) is made dimensionless:

(4a)

Because heat transfer is by conduction, the corre-
sponding length-scale is simply given by:

de= (KT c)I/2. (4b)

The non-dimensional variables are denoted by
primes:

t = t'r; (5a)

z=z'd; (5b)

r-rt; (5c)

Y= Y'Yrn (5d)

T= T'I1T. (5e)

With these, Equations (1) and (2) can be made di-
mensionless, which introduces a non-dimensional
number called the Stefan number:

(3c)

(3d)

L
0'=--.

cpl1T

The Stefan number is a measure of the importance
of latent heat in the temperature equation. If it is
small (0'~ 1), temperature is given by the heat
equation without latent heat. In geological cases,
the Stefan number is of order 1,which implies that
latent heat must be taken into account.

Crystallization proceeds within a region of finite
thickness called the crystallization interval, which
advances into uncrystallized magma. The moving
boundary between fullycrystallized and crystallizing
magma is called the crystallization front and is such
that the crystal content if> is equal to 0.99 (Figure
2). Its coordinate is denoted by X(t). At z = X(t),
the temperature is (j(t). The crystallization interval
is defined as the zone where 0.01 < if>< 0.99 (Figure
2) and has thickness t(t). Both X(t) and t(t) scale
with the crystallization length-scale defined by
Equation (4b).
It is also possible to calculate the crystal size. In

dimensional variables, a unit volume of crystallized
material comprises N crystals, with mean radius R:

(6)

N(z) = f' [1 - if>(z, t)]/(t)dt (7a)
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FIG. 2. Definition of the crystallization variables. The
crystallization front is the moving boundary between
crystallizing and fully crystallized magma. Its coordinate
is denoted by X(t). The region where magma is partially
crystallized is called the crystallization interval, defined as
the zone where 0.01 < c/> < 0.99. Its thickness is f(t).

R(z) = [4/3-nN(zWI/3.

A size-scale appears when Equation (7) is made di-
mensionless (BRANDEISand JAUPART,1986a):

The dimensionless crystal size is obtained by:

R'=R/Rc•

To summarize, knowledge of characteristic scales
for the rates of nucleation and growth allow the
definition of a time-scale, a length-scale and a size-
scale, i.e. of all the important crystallization pa-
rameters. An important result has already been ob-
tained. Both the time-scale and the size-scale de-
pend on the nucleation rate are raised to the power
(lf4), which shows that they are weakly sensitive to
its value. The four orders of magnitude uncertainty
on 1m is therefore not critical. The influence of the
growth rate is slightly more important, but there
are better data.

Because Equations (1) and (2) are coupled, the
problem has to be solved numerically. We first de-
rive dimensionless relationships for the different
crystallization parameters. As they all depend on
the kinetic rates, the influence of their shape on the
crystallization behaviour will be investigated. Be-
cause both exhibit a steep increase just below the
liquidus, it is worthwhile to evaluate how sensitive
the results are to their shape. The influence of a
(Stefan number) isweak and only changes the values
of the coefficients in the different relationships
(BRANDEISand JAUPART,1986a).

SCALING LAWS FOR CRYSTALLIZATION

To derive the various scaling laws, "shape 1" nu-
cleation and growth functions are used (Figure 1).
These have been determined by using kinetic theory
and laboratory data. For these, the scales are given
by the peak values. An important parameter is the
nucleation delay oT, which is the minimum un-
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dercooling for the formation of nuclei. In the fol-
lowing, the Stefan number is taken to be 0.55, which
corresponds to high temperature contrasts (BRAN-
DEISand JAUPART,1986a).

The evolution of crystallization

The position of the crystallization front X(t) is
related to time according to a power-law (Figure
3):

(9)

(7b)

where the exponent, n, is close to 112, but slightly
different. The 112 power-law corresponds to the ideal
case of latent heat release at a fixed melting point
(JAEGER,1968) or ofa binary alloy without kinetic
effects (WORSTER,1986). The crystallization ki-
netics do not alter significantly this simple law, due
to the control by heat diffusion.

The evolution of the crystallization interval
thickness f(t) is shown in Figure 4. The general evo-
lution is a slow increase with few oscillations due
to the discontinuous character of the nucleation
process (BRANDEISet aI., 1984). For this value of
a, the data can be fitted with an error of a few per-
cent with a law (in dimensionless variables):

(8a)

(8b)

E(t) = 0.3tO.31• (10)

As cooling proceeds, undercoolings in the crystal-
lization interval decrease. This is illustrated by the
evolution of the undercooling at the crystallization
front, shown in Figure 5. The general evolution is

o

z
o
;:
iiio..
....z
o -a: 0...

FIG. 3. Position of the crystallization front, X(t), versus
time in dimensionless variables for a Stefan number of
0.55. Time t = 0 marks the emplacement of magma in
country rocks which are colder by an amount of t!.T.
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FIG. 4. Evolution of the interval thickness, E(t), as a
function of time in dimensionless variables for a Stefan
number of 0.55.

a decrease towards a small value which is equal to
oT (BRANDEISand JAUPART,1986a). There are a
few oscillations due to nucleation steps. These are
damped as there is a tendency to achieve an equi-
librium between latent heat release and heat loss.
Note that 8 has not been calculated for times t < 1
(in dimensional variables, for times smaller than
the crystallization time-scale), because crystalliza-
tion has not started and hence no crystallization
front can be defined. This shows that T c [Equation
(4a)] is close to the onset time for crystallization.

The crystal size
The variation of dimensionless crystal size as a

function of the distance to the margin is shown in
Figure 6. Near the margin, the dimensionless crystal
size is close to 1. This shows that the size-scale, Rc,
is equal to the crystal size there. Two kinds off actors
must be considered for extrapolation to natural
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FIG. 5. Dimensionless undercooling at the crystaIlization
front, OCt), as a function of dimensionless time for a Stefan
number of 0.55.
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FIG. 6. Mean crystal size as a function of distance to
the margin in dimensionless variables for a Stefan number
of 0.55.

conditions. The first is that, as crystallization pro-
ceeds, processes other than thermal conduction may
become limiting. In particular, the whole magma
chamber is cooling, which implies a change in
boundary condition (3c) for the temperature equa-
tion. A second factor is that most crystallization
occurs in equilibrium conditions at small under-
coolings. The measurements by PENN(1977) and
SWANSON(1977) only allow constraints on the peak
nucleation rate. At small undercoolings, a detailed
understanding of how the nucleation rate varieswith
temperature is lacking (see the discussion on oscil-
latory crystallization by BRANDEISet aI., 1984).
Specifically, the shape of the nucleation function
must be known with precision. In the preceding
calculations, the nucleation rate tends to zero con-
tinuously as 8 tends towards the nucleation delay,
oT. The unavoidable consequence is that the crystal
size would eventually reach infinity, which is not
realistic. This stresses the need for reliable data on
nucleation rates at small undercoolings. The influ-
ence of the shape of the two kinetic functions is
now addressed .

THE FORM OF THE KINETIC FUNCTIONS

We have so far relied on reasonable expressions
for the relationships between the kinetic rates and
temperature. We compare those, referenced as
shape 1 functions, to the simplest ones: box-car
functions, referenced as shape 2 (Figure 1). These
functions have a constant value throughout the
crystallization range and are zero elsewhere. They
represent the limit-case of a discontinuous behav-
ior. For the nucleation process, this is not unrea-
sonable and approximates the effect of a finite en-
ergy barrier for the formation of one nucleus. In-
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tuitively, these functions represent the obvious way
to achieve a constant crystal size throughout the
crystallization sequence. We show calculations for
the crystal size for all possible combinations of shape
1 and shape 2 functions (Figure 7). We keep the
same procedure for making variables dimensionless.
For shape 2 functions, the scale is given by the con-
stant value. In this section, the Stefan number, a,
is taken equal to 0, as this limiting case is simple
and yet shows of the most features of the crys-
tallization behaviour (BRANDEIS and JAUPART,
1986a).

How crystal size varies reflects the shape of the
nucleation function. For a shape 2 nucleation func-
tion, the crystal size is constant after a small tran-
sient (Figure 7). The value is close to the size-scale
defined by Equation (8a), with a proportionality
constant between 0.5 and 0.7 depending on the
shape of the growth function.
It is concluded that the shape of the nucleation

function critically influences the results, contrary
to that of the growth function. Nucleation is, there-
fore, the process governing crystallization. The main
limitation of these calculations is, thus, the lack of
constraints on the nucleation function. Crystal
growth does playa role in determining the numer-
ical constants in the scaling laws derived above, but
does not have any effect on the crystallization be-
haviour. It is nucleation which is responsible for
temperature oscillations as well as the tendency to
maintain a constant crystal size.

DISCUSSION

Before applying this analysis to crystallization in
magma bodies of different thickness, its validity in
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Fro. 7. Evolution of the mean crystal size as a function
of the distance to the margin for several kinds of kinetic
functions. The numbers in brackets represent the type of
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(shape 1 or 2, see Figure 1). The Stefan number is set equal
to O.

300

313

all cases needs assessment, as several assumptions
have been made. These principally are two. First,
chemical diffusion was neglected in the expressions
for the kinetic rates. Second, cooling was achieved
by heat conduction.

The crystallization kinetics

Crystal growth is controlled by chemical diffusion
and reactions at the crystal-melt interface. The rate
controlling process is diffusion at large times for a
single crystal, as shown by the time variation of
growth rate at fixed undercooling (LOOMIS, 1982;
LASAGA, 1982). Diffusion is also important for rap-
idly cooled magma, for example in lava flows and
chilled margins, resulting in spherulitic or dentritic
crystal morphologies. In the interior of large intru-
sions, crystals do not exhibit these morphological
instabilities and growth is assumed to be controlled
by the interface attachment kinetics (CAHN, 1967;
KIRKPATRICK.,1975; BARONNET, 1984). Also, there
are thick adcumulate layers (WAGER and BROWN,
1968). Compositional convection can occur in the
porous cumulate pile (MORSE, 1969; TAlT et aI.,
1984; KERR and TAlT, 1986), bringing the required
chemical components to achieve adcumulate
growth.

Nucleation is the controlling phenomenon for
crystallization. At any given depth, nucleation oc-
curs essentially once and is followed by growing the
existing nuclei (BRANDEIS et aI., 1984). Crystalli-
zation occurs in a thick region which moves into
uncrystallized magma. The exact growth rate func-
tion has no influence on the results (Figure 7). By
considering a mean value for the growth rate, which
takes into account chemical diffusion and other
processes, the scaling laws can be applied success-
fully. The comparison between petrological obser-
vations and calculations yields values for the peak
nucleation and growth rate that are close to the ex-
perimental data (BRANDEISand JAUPART, 1986a).

An important result of this study is that the shape
of the nucleation function is a critical parameter,
especially at small undercoolings. The fact that the
crystal size does not vary in the interior of large
igneous complexes shows that the nucleation rate
does not tend to zero continuously. There is prob-
ably a limiting value, which presumably corre-
sponds to a finite energy barrier for the formation
of a nucleus of critical size.

We conclude that, in order to explain both the
remarkably regular variation of the crystal size at
the margins of dikes (Figure 8) as well as the uni-
formity of crystal sizes in the interior of magma
chambers, one needs a combination of shape 1 and
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FIG. 8. Variations of crystal sizes in natural dikes (from
WINKLER, 1949 for the Cleveland dike; GRAY, 1970 for
the Kigaviarluk and Grenville dikes).

shape 2 functions for the nucleation rate. For scaling
purposes, one must carry out two separate analyses.
One is for highly transient conditions pertaining to
the margins, where shape 1functions must be used.
The other is for equilibrium conditions pertaining
to the interior where crystallization proceeds at
small undercoolings, where a shape 2 nucleation
function must be used.

Thermal regime

Two assumptions have been made in regard to
the thermal regime. First, cooling is by conduction
which is valid for thin dikes and sills, as well as at
the bottom of large magma bodies. There, crystal-
lization occurs mainly in situ (CAMPBELL, 1978;
McBIRNEY and NOYES, 1979) in stagnant layers
isolated from convection (JAcKSON, 1961; JAUPART
et aI., 1984).At the bottom, there is a steep viscosity
increase due both to lower temperature and higher
crystallinity, and hence, any motions occurring in
the chamber interior do not affect the crystallization
interval. This indicates that conduction is the dom-
inant means of heat transfer there (see also Hur-
PERT and SPARKS, 1980). The second assumption
is made in boundary condition (3c), where we have,
in fact, treated the case of an intrusion of infinite
dimensions. In reality, this is not the case, which
has implications investigated in the last section.

Local scaling laws

Equations (4a) and (8a) give correct values for
highly transient conditions. In fact, the crystal size
evolution shown in Figure 6 clearly reflects the evo-
lution ofthe crystallization temperature (Figure 5).
The same is true for the crystallization interval .
From Equations (2) and (7), both the crystal size
and the crystallization time can be defined locally,
by using the instantaneous values of I and Yat the
crystallization temperature, ():

R = [Y«()/I«()P/4

7 = [1«()y«()3rl/4.

(l la)

(lib)

By using the curve for undercoolings at the crys-
tallization front (Figure 5) and local relationships
[Equation (11)], one can reproduce to a good ap-
proximation the curves for the crystal size and the
crystallization interval. Even though conditions are
highly transient, the local scaling procedure gives
reasonable results, and should be useful even when
cooling is affected by other processes such as con-
vection. If the mean crystal size and the growth rate
are known, Equation (1Ia) gives the local value of
the nucleation rate, independently of the thermal
regime and the conditions at the other boundaries.

BRANDEIS and JAUPART (1986a) have used the
data from dike margins (Figure 9) to constrain the
values of the maximum kinetic rates. The nucle-
ation and growth scales, 1m and Ym, are found to
be close to 1 cm? sec-I and 10-7 cm sec", respec-
tively. For transient conditions prevailing in early
stages at the margins, the characteristic time scale
is 2 X 105 sec, and will be termed 7 I •

In equilibrium cooling conditions that should
prevail in the interior of large magma bodies, crys-
tallization occurs at small undercoolings and hence
at smaller rates. From petrological observations, we
have suggested ranges of 10-7 to 10-3 cm? sec"
for the local nulceation rate and a range of 10-10

to 10-8 cm sec"! for the local growth rate. These
values agreewith laboratory measurements (DoWTY,
1980). For those conditions, the time scale has a
minimum value of 107 sec and is probably close to
108 sec. An upper bound is 109 sec. This time will
be termed 73' It is large, which has important im-
plications detailed below.

THE TIMES FOR CRYSTALLIZATION
AND COOLING

A brief summary is worthwhile at this stage. In
the simple cooling experiment studied above, crys-
tallization starts after a finite time close to 7 I at
undercoolings of several tens of degrees (Figure 5).
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FIG.9. Comparison between the characteristic times for
cooling and crystallization in various cases.(A)Conduction
cooling for dikes of different widths. The thick curve is
from Equation (12) and gives the characteristic time for
conduction cooling. 71 is the time for the onset of crys-
tallization. Dikes which cool faster than 71 cannot nucleate
crystals and hence are chilled. 72 is the time needed to
achieve equilibrium cooling conditions. Dikes which cool
faster than 72 crystallize at high undercoolings and hence
develop small crystals. (B) Convection cooling in sills and
magma chambers. The thick curve is from Equation (13)
and gives the characteristic time for convection cooling.
Intrusions which cool faster than 72 crystallize at high un-
dercoolings and hence develop small crystals. 73 is the
characteristic time for crystallization in equilibrium con-
ditions at small undercoolings. If the cooling time is close
to 73, crystallization has time to record the effects of con-
vective processes operating in the intrusion interior. This
implies that complex igneous structures will be found in
the solidified rocks.

At later times, undercoolings in the crystallization
interval decrease and equilibrium cooling condi-
tions are approached after a time, 72, which is about
102 X 71 (Figures 5 and 6). There is a marked dif-
ference between the cooling rates achieved in the
initial transient regime, and the equilibrium rate.
Note that the time needed to reach equilibrium
conditions is solely determined by the crystallization
kinetics. For the preferred values of the nucleation
and growth scales, equilibrium conditions are
reached once the thickness of crystallized magma
exceeds about 5 m. This corresponds to the flat-
tening of the crystal size curve in natural dikes (Fig-
ure 8).

In order to fit the dike data, values of 1 cm ?

sec:" and 10-7 em sec " are required for the nucle-
ation and growth scales. These are compatible with
data from laboratory experiments (see above). This
shows the use of crystal size data from intrusions.
As discussed above, in any volume of igneous rock,
the crystal size is given by the instantaneous values
of the nucleation and growth rates that prevailed at
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the time it crystallized. From both the theory given
is this paper and the observations, the crystal size
reaches a nearly constant value close to 1 mm in
the interior of dikes away from the margins. This
size is also that which is observed in almost all ig-
neous complexes (see the compilation in BRANDEIS
et aI., 1984). This observation suggests that most
crystallization occurs under similar conditions with
similar instantaneous values of the nucleation and
growth rates.

Further progress in quantitative models neces-
sitates knowledge of the nucleation and growth
functions at small undercoolings. To this end, one
possibility is to investigate intrusions of different
dimensions. The calculations so far have relied on
the assumption that the magma body is infinite. In
this case, after the initial transients, uniform con-
ditions are realized throughout the crystallization
sequence, with, for instance, similar undercoolings
and hence similar crystal sizes (Figures 5 and 6). In
reality, a magma body is of finite dimensions and
cools. The result is that it is no longer possible to
assume a fixed temperature away from the crystal-
lization interval, as was done explicitly in boundary
condition (3c). This conclusion leads to a variety
of cases depending on how temperature varies in
the intrusion interior. For example, the limiting case
is that of a very thin dike that cools very rapidly,
leaving no time for crystals to nucleate, and hence
chills. In the following, various possibilities for
cooling conditions are discussed. The arguments
are rough, and meant to illustrate basic principles
and to indicate the direction for future studies. The
idea is to compare the characteristic times for var-
ious phenomena. These can be defined to within
maybe one order of magnitude, which is not critical
because the range of natural conditions is much
larger.

Conduction cooling in dikes of different widths

Conduction is the dominant mechanism of heat
transport in thin dikes. For larger magma bodies,
convection is important and modifies the thermal
history. Because our understanding of convection
in magmas is far from complete (BRANDEIS and
JAUPART, 1986b), it is not easy to define the limit
between conduction-dominated and convection-
dominated cases. According to SHAW (1965), con-
vection should be important in magma bodies ex-
ceeding thicknesses of a few tens of meters. For dikes
that are vertical intrusions with very large aspect
ratios, we consider that conduction dominate up to
100 m width. This spans the range of most dikes,
including the Cleveland, Grenville and Kigaviarluk
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dikes. Those dikes are 16m, 60 m and 106 m wide
respectively (WINKLER,1949;GRAY,1970). If con-
duction dominates, a rough estimate for the cooling
time is:

D2
tc~-

4K

where D is the dike width and K thermal diffusivity,
for which we take a value 7 X 10-7 m2 sec". This
cooling time ranges from 3.6 X 103 sec for a 10em-
wide dike to 3.6 X 109 sec for a 100 m-wide dike
(Figure 9a). 71, the time for the onset of crystalli-
zation in supercooled magma, is about 2 X 105 sec
and, therefore, falls within this range. Thus, in thin
dikes, cooling occurs before crystals can nucleate,
which leads to chilling. According to our estimates,
this should be true up to a width of 1 m (Figure
9a), which agrees roughly with common field ob-
servations. Another point is that it takes time, 72,

or about 2 X 107 sec, to achieve equilibrium crys-
tallization conditions with crystal sizes of about 1
mm. This implies that dikes which cool faster than
72 will not experience such conditions, which means
higher undercoolings and hence smaller crystal sizes.
According to our rough comparison, this should
correspond to dikes thinner than about 10m (Figure
9a). Note that in the 16m wide Cleveland dike, the
crystal sizes are smaller than in the 100 m wide
Kigaviarluk one (Figure 8), which agrees roughly
with the prediction. The point is that studying dikes
with widths in the range of I-10m means spanning
different cooling histories implying different crystal
sizes. Detailed investigations could therefore allow
constraints on the crystallization kinetics for a range
of undercoolings.

Convection cooling in thick sills and
large magma chambers

As already discussed, convection is likely to be
important in magma bodies which are thicker than
a few tens of meters. In the following, we compare
magma bodies with thicknesses ranging from 10m
to 10km. One observation is that the Palisades sill,
which is 330 m-thick (WALKER,1940), has crystal
sizes of less than 1 mm in its interior, somewhat
smaller than values in larger intrusions (BRANDEIS
et al., 1984). Let us focus on crystallization at the
bottom which is controlled by conduction (see
JAUPARTand BRANDEIS,1986).We have seen that
it takes about 2 X 107 sec to reach equilibrium crys-
tallization conditions. Now, the characteristic time
for convective cooling is (JAUPARTand BRANDEIS,
1986):

where Ra is the Rayleigh number defined by:

pgaD..TD3
Ra=~--

Kµ
(14)

(12) D is the whole chamber thickness, µ is dynamic
viscosity and a thermal expansion coefficient. This
equation shows that the time for convective cooling
is proportional to the intrusion thickness. Figure
9b shows its variation as a function of D for a vis-
cosity of 50 Pa sec representative of basalts. Note
that it is 6 X 105 sec for a 10m thick sill and that
it exceeds 108 sec for kilometer-sized chambers.
It appears, therefore, that intrusions thinner than

about 300 m should cool significantly before equi-
librium crystallization conditions can be reached
(Figure 9b). This is like the dike case discussed
above, implying higher undercoolings in the crys-
tallization interval and hence smaller crystal sizes.
One should, therefore, expect the Palisades sill to
be finer grained than the large Skaergaard and Still-
water chambers, which is indeed the case. The
agreement between the observations and this simple
argument is not perfect: the Palisades sill lies slightly
away from the boundary separating intrusions with
equilibrium crystal sizes (Figure 9b). Again, the
point is that making the agreement better will pro-
vide constraints on the rates of nucleation and
growth. The results obtained so far are encouraging
and suggest that such a study will yield meaningful
information.

There is another consequence. We gave an esti-
mate of about 108sec for 73, the crystallization time
under equilibrium conditions. This is the typical
time taken for a volume of magma to become fully
crystallized in the deep interior of a large magma
chamber. A useful question is whether this volume
of magma experiences varying temperatures due to
the cooling of the intrusion. In other words, will it
contain a record of the evolution of the whole
magma body? As seen in Figure 9b, times for con-
vective cooling are similar to 73 for most known
basic and ultrabasic complexes including the
Skaergaard and the Stillwater intrusions. This con-
clusion suggests that crystallization is slower than
convective processes which occur in the interior of
large magma chambers, and hence that it is able to
record their effects in solidifying rocks. This also
explains in a rough way why large intrusions exhibit
igneous structures which are much more complex
than those from small sills and dikes.

CONCLUSION

We have derived a series of scaling laws which
(13) allow a simple analysis of the crystallization behav-
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iour. For crystallization, the most important process
is nucleation, whose rate can be constrained by lab-
oratory experiments and petrological observations.
Knowledge ofthese kinetic rates allows calculation
of the characteristic crystallization time. A simple
analysis is made to compare crystallization and
cooling times in intrusions of various dimensions.
Different regimes are defined, which lead to ob-
servable variations in the crystal size. By using nu-
merical values for the nucleation and growth scales,
we find that chill features should be frequent in
meter sized dikes. The important point is that ob-
servations of crystal sizes and morphologies in in-
trusions of various dimensions can be used to con-
strain the crystallization time, and hence the crys-
tallization kinetics. Furthermore, the analysis allows
for the treatment of different viscosity values.
Hence, using data from dikes of varying chemical
compositions could also prove useful.

Acknowledgements-Many of the ideas expressed in this
paper developed out of conversations with Stephen Tait.
We thank Hatten Yoder, Jr. for the invitation to the Ha-
waiian conference on the principles of magmatic processes.
We appreciate the encouragement ofDanielle Velde. Bjorn
Mysen improved the manuscript.

REFERENCES

BAKERM. B. and GROVET. L. (1985) Kinetic controls
on pyroxene nucleation and metastable liquid lines of
descent in basaltic andesite. Amer. Mineral. 70, 279-
287.

BARONNETA. (1984) Growth kinetics of the silicates. A
review of basic concepts. Fortschr. Mineral. 62, 2, 187-
232.

BRANDEISG., JAUPARTC. and ALLEGREC. J. (1984) Nu-
cleation, crystal growth and the thermal regime of cool-
ing magmas. J. Geophys. Res. 89,10161-10177.

BRANDEISG. and JAUPARTC. (1986a) The kinetics of
nucleation and crystal growth and scaling laws for mag-
matic crystallization. Contrib. Mineral. Petrol., (Sub-
mitted).

BRANDEISG. and JAUPARTC. (l986b) On the interaction
between convection and crystallization in cooling
magma chambers. Earth Planet. Sci. Lett. 77, 345-361.

BRYANW. B. (1972) Morphology of quench crystals in
submarine basalts. J. Geophys. Res. 77, 5812-5819.

CAHNJ. W. (1967) On the morphological stability of
growing crystals In Crystal Growth, (ed. H. S. PREISER),
pp. 681-690 Pergamon Press.

CAMPBELLI.H. (1978) Some problems with the cumulus
theory. Lithos 11, 311-323.

DONALDSONC. H. (1979) An experimental investigation
of the delay in nucleation of olivine in mafic magmas.
Contrib. Mineral. Petrol. 69, 21-32.

DoWTYE. (1980) Crystal growth and nucleation theory
and the numerical simulation of igneous crystallization
In Physics of Magmatic Processes (ed., R. B. HAR-
GRAVES),pp. 419-485 Princeton Univ. Press.

PENNP. M. (1977) The nucleation and growth of alkali
feldspars from hydrous melts. Can. Mineral. 15, 135-
161.

317

GIBBF. G. F. (1974) Supercooling and crystallization of
plagioclase from a basaltic magma. Mineral. Mag. 39,
641-653.

GRAYN. H. (1970) Crystal growth and nucleation in two
large diabase dikes. Can. J. Earth Sci. 7, 366-375.

GROVET. L. and BENCEA. E. (1979) Crystallization ki-
netics in a multiply saturated basalt magma: An exper-
imental study of Luna 24 ferrobasalt. Proc. Lunar and
Planetary Science Con! 10th, 439-479.

HESSH. H. (1960) Stillwater igenous complex, Montana:
A quantitative mineralogical study. Geol. Soc. Amer.
Mem. 80, 230 pp.

HUPPERTH. E. and SPARKSR. S. J. (1980) The fluid
dynamics of a basaltic magma chamber replenished by
influx of hot, dense ultrabasic magma. Contrib. Mineral.
Petrol. 75, 279-289.

IRVINET. N. (1974) Petrology of the Duke Island ultra-
mafic complex, Southeastern Alaska. Geol. Soc. Amer.
Mem. 138,240 pp.

JAEGERJ. C. (1968) Cooling and solidification of igneous
rocks, In Basalts: The Poldervaart Treatise on Rocks
of Basaltic Composition, (eds. H. H. HESSand ARIE
POLDERVAART),vol 2. pp. 503-536 New York, John
Wiley & Sons Inc.

JACKSONE. D. (1961) Primary textures and mineral as-
sociations in the ultramafic zone of the Stillwater com-
plex, Montana. Geol. Surv. Prof Pap. 358, 106 pp.

JAUPARTC., BRANDEISG. and ALLEGREC. J. (1984)
Stagnant layers at the bottom of convecting magma
chambers. Nature 308, 535-538.

JAUPARTC. and BRANDEISG. (1986) The stagnant bottom
layer of convecting magma chambers. Earth Plan. Sci.
Lett. (In press).

JOHNSONW. A. and MEHLR. F. (1939) Reaction kinetics
in processes of nucleation and growth. Trans. Amer.
Inst. Min. Metall. Pet. Eng. 135,416-442.

KERRR. C. and TAIT S. R. (1986) Crystallization and
compositional convection in a porous medium with ap-
plication to layered intrusions. J. Geophys. Res. 91,
3591-3608.

KIRKPATRICKR. J. (1975) Crystal growth from the melt:
a review. Amer. Min. 60, 798-814.

KIRKPATRICKR. J. (1976) Towards a kinetic model for
the crystallization of magma bodies. J. Geophys. Res.
81, 2565-2571.

KIRKPATRICKR. J. (1977) Nucleation and growth of pla-
gioclase, Makaopuhi and Alae lava lakes, Kilauea vol-
cano, Hawaii. Bull. Geol. Soc. Amer. 88, 78-84.

KIRKPATRICKR. J. (1983) Theory of nucleation in silicate
melts. Amer. Mineral. 68, 66-77.

KIRKPATRICKR. J., Kuo L.C. and MELCHIORJ. (1981)
Crystal growth in incongruently melting compositions:
programmed cooling experiments with diopside. Amer.
Mineral. 66, 223-241.

LASAGAA. C. (1982) Towards a master equation in crystal
growth. Amer. J. Sci. 282, 1264-1320.

LoFGRENG. E. (1980) Experimental studies on the dy-
namic crystallization of silicate melts, In Physics of
Magmatic Processes, (ed., R. B. HARGRAVES),pp. 487-
551 Princeton Univ. Press.

LOOMIST. P. (1982) Numerical simulations of crystalli-
zation processes of plagioclase in complex melts: the
origin of major and oscillatory zoning in plagioclase.
Contrib. Mineral. Petrol. 81,219-229.

McBIRNEYA. R. and NoYESR. M. (1979) Crystallization
and layering of the Skaergaard intrusion. J. Petrol. 20,
3,487-554.



318 G. Brandeis and C. Jaupart

MORSE S. A. (1969) The Kiglapait layered intrusion, Lab-
rador. Geol. Soc. Amer. Mem., 112, 204 pp.

MORSE S. A. (1980) Basalts and Phase Diagrams. 493
pp. Springer-Verlag.

RANDOLPH A. D. and LARSON M. A. (1971) Theory of
Particulate Processes. 251 pp. Academic Press, New
York.

SHAWH. R. (1965) Comments on viscosity, crystal settling
and convection in granitic magmas. Amer. J. Sci. 263,
120-153.

SHEWMON P. G. (1969) Transformations in Metals.
McGraw Hill, New York.

SWANSONS. E. (1977) Relation of nucleation and crystal-
growth rate to the development of granitic textures.
Amer. Mineral. 62, 966-978.

TAIT S. R., HUPPERT H. E. and SPARKS R. S. J. (1984)
The role of compositional convection in the formation
of ad cumulate rocks. Lithos, 17, 139-146.

TSUCHIYAMAA. (1983) Crystallization kinetics in the sys-

tem CaMgSi206-CaAI2Si20s: the delay in nucleation of
diopside and anorthite. Amer. Mineral. 68, 687-698.

TuRNBULL D. and FISCHERJ. C. (1949)Rate of nucleation
in condensed systems. J. Chern.Phys. 17,71-73.

WAGER L. R. (1959) Differing powers of crystal nucleation
as a factor producing diversity in layered igneous intru-
sions. Geol. Mag. 96, 75-80.

WAGER L. R. and BROWN G. M. (1968) Layered Igneous
Rocks. 588 pp. Edinburgh, Oliver and Boyd.

WALKER F. (1940) Differentiation of the Palisade diabase,
New Jersey. Bull. Geol. Soc. Amer. 51, 1059-1106.

WALKER D., KIRKPATRICK R. J., LONGHI J. and HAYS
J. F. (1976) Crystallization history oflunarpicritic basalt
12002: phase equilibria and cooling-rate studies. Bull.
Geol. Soc. Amer. 87,646-656.

WINKLER H. G. F. (1949) Crystallization of basaltic
magma as recorded by variation of crystal size in dikes.
Mineral. Mag. 28, 557-574.

WORSTER M. G. (1986) Solidification of an alloy from a
cooled boundary. J. Fluid. Mech. 167,481-501.


	Page 1
	Titles
	Crystal sizes in intrusions of different dimensions: Constraints on the 


	Page 2
	Page 3
	Titles
	® 
	® 


	Page 4
	Tables
	Table 1


	Page 5
	Titles
	.. 
	~ zk':'.c!'·!l~ _ 
	~ X(tt::l 


	Page 6
	Tables
	Table 1
	Table 2


	Page 7
	Tables
	Table 1


	Page 8
	Titles
	_. 
	z 
	E1 


	Page 9
	Page 10
	Page 11
	Page 12

