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The exploration of reaction space
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Abstract—An efficient method of determining whether or not two multicomponent mineral assem-
blages can have equilibrated at the same metamorphic grade is to explore the reaction space defined
by a matrix representing the compositions of the phases of both assemblages. If reactions having the
minerals of one assemblage as products and the other as reactants (termed incompatibility reactions)
can be found, the assemblage cannot have equilibrated under the same conditions.

Examination of the relationship between composition space and reaction space of the system SiO,-
MgO-FeO shows that assemblages which intersect or overlap in composition space are characterized
by a reaction space containing incompatibility reactions. The regions of reaction space characterized
by incompatibility reactions are bounded by univariant equilibria which are themselves incompatibility
reactions. If mineral compositions change so as to reduce the area of overlap in composition space,
the area of reaction space containing incompatibilities also diminishes, and finally disappears when
the compositional overlaps disappear. At that point, the bounding univariant reactions change from
incompatibility reactions to compatibility reactions. Consequently, the nature of reactions throughout
reaction space can be determined simply by investigating the character of the univariant reactions

defined by a composite assemblage.

INTRODUCTION

GREENWOOD (1967) SHOWED that we can deter-
mine whether or not a pair of mineral assemblages
could have equilibrated at the same metamorphic
grade by analyzing the form of reactions between
phases of the two assemblages. Two cases must be
distinguished.

1. If a reaction having the minerals of one as-
semblage as reactants and those of the other as
products can be written, the tie lines defining the
assemblages intersect in composition space (e.g. Fig.
1A). The bulk compositions at the intersections can
then be represented by either assemblage. But one
assemblage must be more stable than the other un-
der arbitrary values of P, T and activities of exter-
nally fixed components (KORZHINSKII, 1959, p. 62),
so both cannot have equilibrated under the same
arbitrary conditions. In this paper, such assemblages
are referred to as incompatible, and reactions which
have minerals of one assemblage as reactants and
the other as products are designated incompatibility
reactions.

2. If no reactions reflecting an incompatibility
between two assemblages can be found, the assem-
blages do not intersect in composition space (e.g.
Fig. 1B); they simply have different compositions,
and could have equilibrated under the same con-
ditions. Such assemblages are here termed compat-
ible, and reactions involving minerals of two as-
semblages on at least one side are termed compat-
ibility reactions.

Singular value decomposition (see PRESS ef al.,
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1986, p. 52—64 for a lucid discussion of this matrix
technique) provides a simple and efficient method
both for modeling mineral assemblages in multi-
component space and for determining whether or
not two assemblages are compatible. FISHER (1989)
showed that taking the singular value decomposi-
tion (SVD) of a composite matrix containing the
phases of two assemblages can be used to: (1) con-
struct a composite model fitting both assemblages
within any desired level of analytical uncertainty;
(2) determine a set of basis vectors for the com-
position space needed to represent the model; and
(3) determine a set of basis vectors for the reaction
space needed to characterize reactions between the
minerals of the model assemblages. The reaction
space of this paper differs somewhat from that used
by THOMPSON (1982) because the reactions consid-
ered here express relations between phases of meta-
morphic assemblages, while those discussed by
Thompson express relations among components of
metamorphic phases.

In order to determine whether or not the model
assemblages intersect in composition space, it is
necessary to explore the reaction space of the com-
posite to see whether it contains a reaction indi-
cating an incompatibility. FISHER (1989) stated but
did not demonstrate that this exploration can be
carried out simply by writing all possible univariant
reactions involving the phases of the model com-
posite assemblage. Given the importance of this
point, it seems worthwhile to provide further Jjus-
tification for this statement.

This paper analyzes three hypothetical assem-
blages in the system SiO,-MgO-FeO to illustrate
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FIG. 1. Mineral assemblages in a hypothetical three-
component system. A shows two two-phase assemblages,
which intersect, and so cannot have equilibrated under
the same external conditions; B shows two two-phase as-
semblages which do not intersect, and so can have equil-
ibrated under the same conditions.

how the set of possible univariant reactions provides
a map to all parts of reaction space. The general-
ization to more complex systems is straightforward.

Hans Eugster devoted much of his life to ex-
ploring P-T-activity space, often using the principles
worked out by SCHREINEMAKERS (1915-1925), as
an aid to navigation. This paper shows that the same
rules which govern P-T-activity space can be used
to explore reaction space.

A SIMPLE EXAMPLE

Consider four hypothetical assemblages (M1, M2,
M3, and M4) from the system SiO,-MgO-FeO, with
mineral compositions listed in Table 1. A plot of
these assemblages in composition space (Fig. 2),
shows that: (1) M1 and M3 do not intersect, and
can have formed under the same external condi-
tions; (2) M1 intersects a part of M2, and so cannot
have formed under the same conditions; (3) M4
completely encloses M2, and cannot have formed
under the same conditions. Our task is to find a
general method for distinguishing these three cases
in multicomponent systems using SVD.

Reactions between M1 and M2

To determine a set of basis vectors for the reaction
space defined by M1 and M2, we first write a matrix
representing the composite M1 + M2:

1.00 1.00 1.00 1.00 1.00
M12 =0.00 0.60 0.75 0.40 0.70
0.00 0.40 1.25 0.60 1.30,

in which rows represent the components SiO,, MgO
and FeO, the first three columns represent the min-
erals of M1 (gz;, op; and ol, in that order), and the
last two the minerals of M2 (op; and ol,). The ab-
breviations used in this paper are gz = quartz, ol
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= olivine, op = orthopyroxene and ox = oxide;
subscripts indicate the number of the mineral as-
semblage. Taking the SVD of M12 gives three ma-
trices which are useful for interpreting M1 and M2
(FISHER, 1989):

3.072 0.000 0.000 0.000 0.000
0.000 0.912 0.000 0.000 0.000
W = 0.000 0.000 0.276 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000,
—0.697 0.706 —0.126 0.000 0.000
—0.394 —-0.231 0.890 0.000 0.000
U= -0.599 —0.670 —0.439 0.000 0.000
0.000  0.000 0.000 0.000 1.000
0.000 0.000 0.000 1.000 0.000,
—0.227 0.774 —0.456 0.000 —0.376
—0.382 0.329 0.839 0.172 —0.111
V =-0.567 —0.333 —0.028 —0.686 —0.310
—0.395 0.232 —0.122 —0.172  0.863
—0.570 —0.358 —0.268 0.686 —0.066.

The diagonal elements of W are the singular val-
ues of M12; the fact that three are non-zero shows
that the matrix is of rank three (written R(M12)
= 3), thereby confirming that M1 and M2 can be
represented by a three component system, and in-
dicating that the composite assemblage of five
phases involves a reaction space of 5 — R(M12) = 2
dimensions. The first three columns of U (those
corresponding to the non-zero elements of W con-
stitute an orthonormal basis for composition space;
the last two columns of V (corresponding to the
zero elements of W) give the coefficients of two

Table 1. Compositions of minerals in hypothetical
Si0,-MgO-FeO assemblages

qz op ol )4
M1 SiO, 1.000 1.000 1.000
MgO 0.000 0.600 0.750
FeO 0.000 0.400 1.250
M2 SiO, 1.000 1.000
MgO 0.400 0.700
FeO 0.600 1.300
M3 SiO, 1.000 1.000
MgO 0.300 0.500
FeO 0.700 1.500
M4 SiO, 1.000 1.000 0.000
MgO 0.000 1.000 0.325
FeO 0.000 1.000 0.675

ol = olivine, op = orthopyroxene, ox = oxide, qz
= quartz; compositions expressed in oxide formula units
(e.g. op; = Mgy sFeq.4SiOs).
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FIG. 2. The assemblages of Table 1 plotted in SiO,-MgO-FeO space. Abbreviations are ol = olivine,
op = orthopyroxene, ox = oxide, and qz = quartz; numerals show assemblage to which minerals

belong (e.g. op; belongs to M1).

reactions which provide an orthonormal basis for
reaction space:

V4. 0.686 ol; + 0.172 op,

= 0.172 op; + 0.686 ol,,
V5: 0.376 qz; + 0.111 op; + 0.310 o],

+ 0.066 ol, = 0.863 op,,

where negative coefficients in the basis vectors are
taken to represent reactants, and positive coeffi-
cients products.

V4 has phases of both M1 and M2 as both reac-
tants and products, and V5 has phases from both
assemblages as reactants, so neither represents an
incompatibility between the two assemblages. But
we need to determine whether reactions reflecting
an incompatibility exist anywhere in the space
spanned by V4 and V5.

The reaction coefficients of each mineral are ob-
viously linear functions of the basis vectors V4 and
V3, and so can be represented by contours in V4—
V5 space (Fig. 3). The five zero contours in Fig. 3
have special significance. They represent lines in
V4-V5 space where each of the five phases of the
matrix M12 have zero coeflicients, and do not par-
ticipate in the reaction. They therefore involve only
four phases in the system SiO,-MgO-FeO and cor-
respond to the five univariant reactions defined by

the five sets of four phases in M12. Thése zero con-
tours can be labeled by enclosing the phases not
participating in each reaction in brackets, as is
commonly done with univariant reactions, and the
reaction coefficients can be calculated from M12
using the method of KORZHINSKII (1959, p. 103ff)
or computer programs such as MULTI of FISHER
(1989):

[gz:] 4.00 ol, + 1.00 op, = 1.00 op; + 4.00 ol,;

[op:] 1.00 gz, + 2.00 ol; = 2.00 op, + 1.00 ol;
[ol;] 2.50 op, = 1.00 gz, + 0.50 op; + 1.00 ol,:
[op:] 2.00 op; + 9.00 ol, = 1.00 gz; + 10.00 ol,;

[ol,] 1.00 gz, + 0.25 op; + 1.00 ol, = 2.25 op,.

Each zero contour or reaction line in Fig. 3 has
a positive and a negative direction, characterized
by reaction coefficients of opposite sign. We are free
to designate either direction as positive. However,
it will be convenient to define the positive direction
of one reaction arbitrarily, then let the positive di-
rections of the other reactions be established by
placing labels designating products and reactants
on opposite sides of each reaction element, and ap-
plying the rules used to distinguish stable and meta-
stable portions of univariant reactions in P-T-ac-
tivity diagrams (SCHREINEMAKERS; 1915-1925;
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FIG. 3. V4-V5 space, contoured to show values of re-
action coefficients. Zero contours (heavy lines) shown for
all phases; non-zero contours (light lines) are omitted for
op; and ol, for clarity.

ZEN, 1966).! Because [qz;] and V4 are identical, it
is sensible to choose the positive direction of [qz;]
to coincide with the positive direction of V4. With
this convention, Schreinemakers’ rules are obeyed
if and only if reactants are written on the counter-
clockwise side of each reaction, and products on
the clockwise side (Fig. 4).

The reactions plotted in Fig. 4 divide the plane
representing V4-V5 space into 10 sectors, each
bounded by the positive or negative ends of two
reactions. The character of the reactions within each
sector can be inferred by inspection of the bounding
reactions. For example, consider reactions in the
space between [qz;] and [ol;]. The line [qz,] rep-
resents the zero contour for the qz; coefficient. Re-
actions plotting just below [qz;] have a form similar
to [gz,], but involve a small amount of qz, . Because
qz; lies on the clockwise side of reactions [ol;] and
[op.], it is a product in those reactions, and—ac-

! There is no requirement that the positive ends of re-
actions in reaction space be defined by the Schreinemakers
rule, because they are not constrained by any condition
comparable to that of minimizing Gibbs free energy (cf.
ZEN, 1966, p. 7-9). However, there is no reason not to
adopt the convention used here, and doing so leads to an
internally consistent way of writing reactions which is use-
ful in analyzing the geometry of reaction space.
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cording to the convention adopted above—must
be a product in all reactions below [qz,]. Conse-
quently, reactions at points in reaction space just
below [qz,] must have the form ol; + op, = qz;
+ op; + ol,. Similar reasoning shows that reactions
immediately to the right of [ol;] have the same form,
so reactions of this form characterize the entire space
between [o],] and [qz,].

Of the five reactions in Fig. 4, two ([op;] and
[0l;]) have the minerals of M1 and M2 on opposite
sides. They are therefore incompatibility reactions,
and confirm algebraically that M1 and M2 do in-
tersect in composition space. Reactions in the sector
between these two reactions are also incompatibil-
ities, as can be seen by inspection of the coefficients
of [ol,] and [op;]. Ol, is a product of reaction [op;],
and so must be a product in all parts of reaction
space to the right of [ol,]; consequently reactions
immediately right of [ol,] must have the form of
the incompatibility reaction gz, + op; + ol; = op,
+ ol,. Likewise, op; is a reactant of [ol,], and so
must be a reactant in reactions to the left of [op,].
Consequently, reactions immediately to the left of
[op.] represent the same incompatibility reaction.

Similar reasoning shows incompatibility reactions
occur only between [op;] and [ol,]. The sectors
bounded by [op;] or [0l,] and one compatibility
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FIG. 4. Configuration of zero contours of reaction coef-
ficients for M1M2 composite assemblage in V4-V35 space,
drawn using conventions adopted in text. Positive ends of
zero contours shown by heavy lines, negative ends by light
lines.
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reaction contain only compatibility reactions, as can
be seen by considering the space just to the right of
[op:]. Reactions in this area have coefficients similar
to [op,], but with small op; coefficients. Because
op; is a product in [qz,], it must be a product ev-
erywhere to the right of [op,], and reactions just to
the right of that reaction must have the form qz;
+ ol; = op; + op, + oly, a compatibility reaction.
Comparable arguments show that compatibility re-
actions characterize reaction space immediately to
the left of [ol,].

The form of the reactions in each sector remains
constant so long as no zero coefficient contours (ei-
ther positive or negative) are crossed. But because
one coefficient must change sign as each zero con-
tour is crossed, the character of reactions must
change whenever one is crossed. For example, the
large arc between [ol,] and [op,] is made up of three
sectors, two outer ones in which the reactions are
compatibilities, and a central sector in which the
reactions are incompatibilities. This central sector
is simply the negative portion of the sector between
[ol,] and [op,], analyzed above.

These arguments demonstrate that the reaction
space defined by assemblages M1 and M2 contains
incompatibility reactions in the sectors between
both positive and negative portions of [op,] and
[0l,], and only in those sectors; all other portions
of reaction space are occupied by compatibility re-
actions.

Reactions between M1 and M3

To search for incompatibilities between M1 and
M3, we form a composite matrix giving the com-
position of the minerals of both M1 and M3 and
take its SVD, which gives a reaction space with two
basis vectors,

V4. 0.472 gz, + 0.449 o], + 0.023 ol;

= 0.217 op; + 0.727 ops;
0.543 ol; + 0.453 ops

=0.453 op; + 0.543 ol;.

V5"

Using the conventions adopted above, we divide
this reaction space into sectors bounded by four-
phase reactions (Fig. 5). All the reactions of Fig. 5
involve phases of both assemblages as reactants or
products, and so represent compatibilities. Because
compatibility reactions cannot change to incom-
patibilities when another phase is added, all sectors
of reaction space in Fig. 5 must contain compati-
bility reactions. This observation confirms algebra-
ically the message conveyed by Fig. 2; M1 and M3
do not intersect in composition space.
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FIG. 5. Configuration of zero contours of reactions coef-
ficients for M1M3 composite assemblage in V4-V5 space.
Positive ends of zero contours shown by heavy lines, neg-
ative ends by light lines. Note that the positions of V4 and
V5 are reversed from that of Fig. 4, so as to maintain [az,]
in the same orientation.

The reasons for the different character of reac-
tions in MIM2 and M1M3 can be seen by com-
paring the chemography of M1, M2 and M3 (Fig.
2) with the form of reaction space (Figs. 4 and 5).
As op, approaches the gz;-ol, tie line in composition
space, reactions [op,] and [ol,] of Fig. 4 approach
one another in reaction space, narrowing the sectors
characterized by incompatibilities. When the com-
position of op, becomes collinear with gz, and ol;,
reactions [op,] and [ol,] become degenerate and
merge, eliminating the sector occupied by incom-
patibilities altogether. Once op, moves outside the
qz;-op;-ol; triangle, reaction [op,] moves to the left
of [ol,], giving the reaction space geometry of Fig.
5, which contains compatibility reactions only. The
key point here is that the univariant reactions
change from incompatibilities to compatibilities at
precisely the point where the sector of reaction space
characterized by incompatibility reactions disap-
pears.

Reactions between M4 and M2

To search for incompatibilities between M4 and
M2, we form a composite matrix giving the com-
position of the minerals of both M4 and M2 and
take its SVD, which gives a reaction space with two
basis vectors,
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V4" 0.609 op, + 0.104 ol,
= 0.567 qz4 + 0.145 ol, + 0.526 0Xa;
V5" 0.593 ox4 + 0.593 op,

= 0.049 oly + 0.543 ol,.

Using the conventions adopted above, we divide
this reaction space into sectors bounded by four-
phase reactions (Fig. 6). Two of these reactions
([op,] and [ol,]) are incompatibility reactions, re-
flecting the fact that M4 encloses M2 in composition
space (Fig. 2). Inspection of reaction coefficients
shows that two sectors of reaction space are char-
acterized by incompatibility reactions: that between
the positive end of [op,] and the negative end of
[0l,], and that between the positive end of [ol,] and
the negative end of [op,].

The differences between the reaction space ge-
ometries of Figs. 4 and 6 can be understood by
imagining the changes that would occur were the
compositions of op; and ol; to approach the com-
positions of oly and oxg4, respectively, so that ol,
crosses into the qz;-op;-ol, triangle across the qz;-
ol, tie line (Fig. 2). Were this to happen, reaction
[op.] of Fig. 4 would rotate counterclockwise and
merge with the negative end of [op;] when ol, be-
comes collinear with qz;-ol; (to avoid a further de-
generacy, we assume that ol; becomes deficient in
Si0,). The reaction rotates further when ol, enters
the M1 phase triangle, and the reactions assume
the configuration of Fig. 6. At the degeneracy the
form of both reactions changes from A + B = C
+DtoA+ B+ C=D,and [op,] becomes a com-
patibility, while [op,] becomes an incompatibility.
Consequently the sector of reaction space contain-
ing incompatibilities becomes bounded by the re-
actions [op,] and [ol,] rather than by [op,] and [ol,].

This example shows how the differences in
chemography of M1 + M2 and M4 + M2 are re-
flected in the form of the incompatibility reactions.
In M4 + M2, both M2 minerals are enclosed in the
M4 triangle, so both incompatibilities are terminal
reactions. In M1 + M2, only op, is enclosed in the
M1 triangle, and only op, participates in a terminal

reaction; the form of the incompatibility involving
ol, is a direct reflection of the tie line intersections
of Fig. 2.

DISCUSSION AND CONCLUSIONS

These examples demonstrate four points govern-
ing relations between the univariant reactions de-
fined by a composite mineral assemblage and the
vector space representing reactions within that
composite.

0OX4+0pPp

79z [qz]

FIG. 6. Configuration of zero contours of reaction coef-
ficients for M4M2 composite assemblage in V4-V5 space.
Positive ends of zero contours shown by heavy lines, neg-
ative ends by light lines. Note that the positions of V4 and
V5 are reversed from that of Fig. 4, so as to maintain [qz;]
in the same orientation.

1. The univariant reactions represent lines in re-
action space along which one or more reaction coef-
ficients change sign, and reactions change character;
they divide reaction space into sectors characterized
by reactions of uniform character.

2. If the assemblages of the composite do not
overlap in composition space, none of the univar-
iant reactions represent incompatibilities, and no
sectors of reaction space contain incompatibility
reactions.

3. If the assemblages do overlap in reaction
space, the univariant reactions include incompati-
bility reactions, and those reactions bound sectors
of reaction space characterized by incompatibilities.

4. As changes in mineral composition narrow
the overlap of assemblages in composition space,
the sectors of reaction space characterized by in-
compatibilities also narrow. At the point where
mineral compositions become collinear and uni-
variant reactions become degenerate, the part of
reaction space characterized by incompatibilities
collapses into that one degenerate reaction. Any
further compositional changes eliminate the collin-
earity and the degeneracy (thereby eliminating the
last vestiges of reaction space characterized by in-
compatibilities) and simultaneously change the
univariant reactions to compatibilities.

In addition, the nature of any overlap in com-
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position space is reflected by the form of incom-
patibility reactions: minerals of one assemblage en-
closed in the polyhedron defined by the minerals
of the other assemblage participate in terminal re-
actions, while those outside the polyhedron are in-
volved in reactions whose form reflects intersections
of tie lines or tie surfaces.

These conclusions emerged from consideration
of a three-component composite assemblage defin-
ing a two-dimensional reaction space, but they are
easily extended to include multicomponent assem-
blages and multidimensional reaction space.

In a reaction space of three dimensions, the zero
contour lines of Figs. 4, 5 and 6 become zero con-
tour surfaces in that reaction space. Those surfaces
intersect in lines along which two minerals have
zero reaction coefficients; those lines correspond to
univariant reactions, and within each zero contour
surface, they have properties exactly like those of
Figs. 4, 5 and 6, dividing each contour surface into
sectors characterized by compatibility reactions or
incompatibility reactions. These sectors then govern
the character of reactions in the volumes between
the surfaces just as the univariant lines of Figs. 4,
5 and 6 govern the character of reactions in the
intervening sectors. And just as in the examples
discussed above, changes in the chemography of
composition space produce changes in reaction
character as compositional collinearities lead to re-
action degeneracies, reflected by the collapse of
three-dimensional elements of reaction space into
surfaces and lines.

Relations in reaction spaces of more than three
dimensions are still more complex. But despite these
complexities and the difficulty of visualizing either
compositional relations in multicomponent assem-
blage diagrams or univariant reactions in multidi-
mensional reaction space, the mathematical rela-
tions between mineral composition and reaction
stoichiometry which give rise to the points sum-
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marized above still hold true. Univariant reactions
defined by a composite assemblage are lines in re-
action space along which the reaction coefficients
of one or more minerals equal zero. They bound
multi-dimensional sectors of reaction space, and the
character of reactions in those sectors ultimately
reflects the character of the bounding univariant
reactions just as in the simple examples analyzed
above. Consequently, even the most complex re-
action space can be explored by systematically in-
vestigating the form of the univariant reactions de-
fined by a composite mineral assemblage.
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