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Temperature dependence of isotopic fractionation factors
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Abstract-The temperature dependences of the partition function ratios of gaseous molecules at low
and high temperatures, originally investigated by UREY (1947) and BIGELEISENand MAYER (1947),
are derived and clarified. For diatomic molecules at low temperatures, the logarithm of the partition
function ratio becomes

In [Q2] ~ VI - V2 +In [0'IV2]
QI 2 0'2VI

where V represent values of hv/ kT, v represent the molecular vibrational frequencies, and 0' are the
symmetry numbers. This expression is linear in 1/ T, as it is of the form y = m] T + const., where
m is proportional to the difference between the zero point energies of the ordinary ( 1) and isotopically
substituted (2) molecules. At high temperatures the partition function ratio may be expanded in a
power series; for example, for diatomic molecules:

I [
Q2]_1 [0'1] v~-Vi V~-vt V~-Ufn - - n - ----+-------+
QI 0'2 24 2880 181440' ..

The well-known 1/ T2 dependence arises from the second term ( V2/ 24), which becomes increasingly
important relative to the higher-order terms as temperature increases. Extension of these results to
polyatomic molecules and to isotopic fractionation factors is straightforward.

INTRODUCTION pers that are little referenced by the geochemical
IT ISWELLKNOWNthat the isotopic fractionation community. For some years I have wondered why
factor between two substances A and B a is a simplification of the partition function ratios (eqns., AB, .
function of absolute temperature (T) but generally 3a,b, below) usmg the well-known approximation
not a function of pressure. Several useful introduc- eV"" 1 + U, which would be expected to be very
tory discussions (e.g., O'NEIL, 1986;HOEFS,1987) accurate at extremely high temperatures (small U),
state that In (aAB) varies as 1/ Tat low temperatures does not lead to the U2/24 dependence derived by
and as 1/ T2 at higher temperatures, ultimatelyap- UREY.Similarly, one may immediately verify that
proaching zero fractionation (a = 1) at infinite this approximation does not reduce BIGELEISENand
temperature. Such discussions invariably refer to MAYER's"G" function, represented by the sum Ih
the seminal papers by UREY( 1947) and BIGELEISEN - 1/ U + 1/ (e V - 1), to its high temperature value
and MAYER(1947) on isotopic fractionation, but of U/12. The proper derivation in either case re-
when the latter are consulted for a detailed expla- quires that great care be taken to account for all
nation of these functional dependences, one is apt product terms to sufficiently high order, which in
to be left unsatisfied. UREY (1947), for example, turn requires that no less than four terms of the
merely states that his equations for the partition exponential expansion for e" are used, together with
function ratios can be "easily expanded" at high sufficient terms in binomial expansions that are
temperatures to give his single term demonstrating subsequently needed to invert the resulting denom-
the U2/24 dependence. BIGELEISENand MAYER inators. Moreover, one would be very hard pressed
( 1947), on the other hand, make numerous ap- to use such methods to calculate the succeeding
proximations to represent the ratios in terms of their term of a power series representing the partition
function "G," which they then graphically analyze function ratio, even though this term is of interest
to determine the temperature dependence. because it represents the bulk of the deviation of

The following derivations were undertaken in this ratio from the simple U2/24 dependence. Also,
order that I might provide a more satisfactory ex- the BIGELEISENand MAYERapproximation does
planation for the temperature dependences of iso- not give the proper y-intercept for the In K vs 1/ T
topic fractionation factors for a class. Through a relation in the low temperature case.
subsequent literature search I learned that many of In short, the above points number among several
these results had been previously published (BI- that to my knowledge have not been clearly dis-
GELEISEN,1958; STERNet al., 1968), albeit in pa- cussed in the literature. It is hoped that the simple
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derivations and discussions presented here will en-
lighten geochemists about the straightforward basis
for the temperature dependence of isotopic frac-
tionation factors for gaseous molecules, and remind
them of some important but nearly forgotten pa-
pers.

BASIC EQUATIONS

A generalized equation may be written to express
isotopic exchange between two substances A and
B, where the subscripts I and 2 indicate that the
molecules, respectively, only contain either the light
or the heavy isotope:

The equilibrium constant K for such reactions may
be written in terms of the simplified partition func-
tions (Q's) of UREY( 1947), where each Q repre-
sents the equilibrium constant between the com-
pound of interest and its separated atoms, i.e.

Here

Q2 = 0'1 V2 e-Vz/2 I - e-V,

QI 0'2 VI I - e-V2 e-V,/2

for diatomic molecules, and

Q
3n-6 U -V2;/2 I _ -Vii

2 _ 0'1 IT u e e (3b)
-Q - - -V I - -V2; -VIi/2
I 0'2 i~1 Ii e e

for nonlinear polyatomic molecules. The expression
for linear polyatomic molecules is the same as the
latter, except that there are only 3n - 5 vibrational
modes instead of 3n - 6. In the above, the 0' denote
the symmetry numbers, that is, the number of in-
distinguishable ways of orienting the molecule in
space (e.g., 0' = 12 for the tetrahedral molecule
CH4). In addition, the Vi represent the quantities
hv.] kT, where h is Planck's constant, k is Boltz-
mann's constant, T is temperature in Kelvins, and
the Vi are the vibrational frequencies of the mole-
cules.

The equilibrium constant (K) is related to the
isotopic fractionation factor (a) by the expression
(e.g. , FERRONSKYand POLYAKOV,1982)

a = (~rab
where the product ab is equal to the number of
atoms exchanged in the isotopic exchange reaction.
Here Koo represents the limiting equilibrium con-
stant at very high temperature, which is related only
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to the stoichiometric coefficients of the exchange
equation and to the symmetry numbers of the mol-
ecules:

K = (O'IA/ O'2A)G
00 (O'IB/ 0'2B)b •

Note that the symmetry numbers cancel in the
expression for a (Eqn. 4a), because the same factors
are present in the expressions for both K and Koo .
Isotopic fractionation is a purely quantum me-
chanical effect and does not depend on classical
factors such as symmetry numbers (BIGELEISENand
MAYER,1947; STERNet aI., 1968).

The above equations, and the assumptions upon
which they are based, have been extensively dis-
cussed in the literature, so no additional description
will be given here. For present purposes these equa-
tions will be taken as given, and attention will be
confined to examination of their functional behav-
ior in the cases where the Vi are either large (low
temperature and / or high frequency) or small (high
temperature and/or low frequency). These con-
ditions are referred to below simply as the "low-
temperature" and "high-temperature" cases, re-
spectively.

(4b)

(3a) LOW-TEMPERATURE CASE

At low temperatures (large V), it is evident that
the (I - e-V) factors all approach unity. Accord-
ingly, the basic equations (3a,b) for the simplified
partition function ratios reduce to

Q2 '" ~ V2 e(V,-V2)/2

Ql - 0'2 VI

for diatomic molecules and to

Q 3n-6 U
_2 ~ ~ IT ~ e(VIi-V2;)/2 (5b)
QI 0'2 i~1 Vii

(5a)

for nonlinear polyatomic molecules. The logarithm
of these ratios may then be written as

In [Q2] ~ VI - V2 + In [0'IV2] (6a)
Ql 2 0'2Vl

for diatomic gases and

[ Q] 3n-6 V V 3n-6 [ ]In _2 ~ 2: Ii - 2i + 2: In 0'1
V
2i (6b)

QI r=I 2 i~1 0'2Vli

(4a) for nonlinear polyatomic molecules, respectively.
This equation is similar to one given, but not de-
rived or justified, by STERNet al. ( 1968). Note that
Eqns. (6a,b) are linear in 1/ T, being of the form y
= m / T + const., where the slope m is the difference
between the zero point energies (hvd 2) of the or-



Temperature dependence of isotopic fractionation factors

dinary and isotopically substituted molecules di-
vided by Boltzmann's constant. The identical slope
is predicted by the Gl::..U formulation ofBIGELEISEN
and MAYER(1947), although it does not predict
the correct y-intercept in the low-temperature case.
The dependence of In (Q2/ QI) on the zero-point
energy difference arises because, at low tempera-
tures, the lowest possible vibrational energy states
are populated by the molecules.

HIGH-TEMPERATURE SERIES

Considering that the Q2/ QI ratios (Eqns. 3a,b)
have so many product terms that are exponential
in nature, and that the equilibrium constants and
isotopic fractionation factors depend on quotients
of these factors raised to stoichiometric powers, it
is surprising that in their original papers neither
UREY( 1947) nor BIGELEISENand MAYER( 1947)
took the logarithm of the basic equations before
attempting to expand them in series. Equations
(3a,b) directly become

for diatomic molecules and

[
Q2] [ 0' 1 ] 3n-6 [ U2i]In -Q = In - + In IT -U.
I 0'2 i~1 II

for nonlinear polyatomic molecules.
Equations (7a,b) can be simplified if the In [1

- e -u;] terms are expanded in a series. This can be
accomplished by first expanding e-u; in the well-
known exponential series and factoring out Ui, e.g.
In [1 - e-U,]

[ {
UI ui Uf }]=In UI 1--+---+2 6 24 ... (8a)

or:

In [1 - e-u,] = In [Ud

(8b)

Now, expanding the right-hand term in a Taylor
(Maclaurin) series about U,= 0 gives for high tem-
peratures

13

-U U1 u;In [1 - e '] = In [UI] - - + -
2 24

V1 in uf---+--- +2880 181440 9676800 .... (8c)

The computations become extremely laborious be-
yond the first few terms, and in practice this series
was generated by the computer program "Mathe-
matica" (WOLFRAM,1988). Equation (8c) implies
that

+ ( ui - U~) _ ( Ui - m)
24 2880

( uf - U~) ( uf - U~)
+ 181440 - 9676800 +.... (8d)

Now using expansion (8d), Eqn. (7a) for diatomic
gases becomes

{I [
UI] U1 - U2 ui - U~ ui - U~+ n - - + ---=-~
U2 2 24 2880

U6_U6 U8_U8 }+ I 2 I 2
181440 - 9676800 + ... . (9)

Cancellation oflike terms gives, for diatomic gases,

In [ Q2] = In [0' 1] + ui - U~_ ui - m
QI 0'2 24 2880

U6 - U6+ I 2

181440
uf - U~
9676800 + . . .. (lOa)

Similarly, Eqn. (7b ), for polyatomic molecules, be-
comes

3n-6 { U2 U2 U4 U4+ L Ii - 2; _ Ii - 2i

i~1 24 2880

U6_u6 8+" 2i _ U Ii - U~i }
181440 9676800 +... . (lOb)

The U2/24 dependence ofln [Q2/ QI] is evident
from the second term of the series in Eqns. (lOa,b)
because the higher order terms become insignificant
in comparison. Note that, as T -+- co , Eqns. ( lOa,b)
reduce to
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Q2 = 0'1

Ql 0'2

The latter result, which along with Eqn. (2) leads
directly to the classical value given by Eqn. (4b),
can also be obtained by applying l'Hopital's rule to
Eqn. (3a), again as T- 00.

In terms of illustrating the high-temperature
variation of the fundamental Eqns. (3a,b), these
Taylor series representations have several advan-
tages. First, the higher order terms are explicit in
Eqns. (10a,b). Also, the expansion of In {Q2IQt}
in series, rather than of Q21QI , is advantageous be-
cause the equilibrium constant and the isotopic
fractionation factors depend on quotients of the Q
ratios raised to various powers. This dependence
can in the logarithmic representation be exactly
taken into account by simple addition oflike terms.
In contrast, to derive K or a from the approxima-
tions given by UREY (1947) or BIGELEISENand
MAYER(1947), one must apply the rather poor
approximation In (1 + x) "" x to the Q21Ql ratio
for each molecule. It is therefore unfortunate that
BIGELEISEN(1958), who long ago derived Eqn. (10)
by a somewhat different method, published his re-
sult in a proceedings volume that is not available
in most libraries. BIGELEISEN( 1958) was also able
to show that the numerical coefficients of the series
(Eqns. ( 1Oa,b) are related to the Bernoulli numbers
B; (see GRADSHTEYNand RYZHIK,1980, pp. xxix
and 1079-1080). In the present notation, the coef-
ficients are given by Bnl {n( n!) }, where n is the
exponent of U for the term of interest.

TEMPERATURE DEPENDENCE OF ISOTOPIC
FRACTIONATION FACTORS

It is straightforward to relate Eqns. (6a,b) and
( 1Oa,b) to the logarithm of the fractionation factors
for isotopic exchange reactions, because Eqn. (4a)
may be written as

Making appropriate substitutions (from Eqn. 6a)
for the Q2IQ, ratios of the diatomic molecules A
and B at low temperatures gives an expression that
is linear in 11 T:

I
~a( UIA - U2A) - b( UIB - U2B)

n a = 2ab

Proceeding similarly (i.e. , by combining Eqns. lOa
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(11 )
and 12, but ignoring high-order terms) for reactions
involving diatomic molecules at elevated temper-
atures gives an expression linear in 11T2 with an
intercept of zero:

In a ~ a( uiA - UL) - b( uiB - U~B). ( 14)
24ab

(12)

In addition to representing these well-known tem-
perature proportionalities, Eqns. ( 13) and ( 14) ex-
plicitly indicate the theoretical values for the slopes
and y-intercepts of the fractionation lines in the
low- and high-temperature cases. These two equa-
tions apply only to isotopic exchange between di-
atomic molecules; equations for exchange reactions
involving polyatomic molecules are similar in form
but contain sum and product terms. A linear, zero
intercept relation between In a and 11T2 also ap-
pears to have useful application to the empirical
description of oxygen isotopic equilibria among
nonhydrous silicates or oxides, in effect because the
values of U are generally small for these substances
at geologically relevant temperatures (BOTTINGA
and JAVOY,1975).
It needs to be pointed out, however, that Eqns.

( 13) and ( 14) cannot predict many of the complex
behaviors that may be exhibited in gaseous equilib-
ria, and which are accounted for by Eqns. (3a,b).
For example, Eqn. (14) does not predict any cross-
overs, inflection points, or maxima or minima in
fractionation equations. Equation (13) predicts a
single crossover, albeit one that may lie outside its
range of validity (see below). An interesting dis-
cussion and examples of such effects are given by
STERNet al. ( 1968).

Equations of the form In a = C1 + C21 T + C31
T2, where the C's are empirical constants, are com-
monly used to describe laboratory determinations
of certain fractionation factors that, over temper-
ature ranges of interest, do not appear to strictly
follow either the 11T and 11T2 limiting depen-
dences(e.g., MAJOUBE,1971). JONES(1958) argues
theoretically that equations of this form (with C1,

= 0) are useful in the description of the vapor pres-
sure ratios of isotopic solids. In an attempt to es-
tablish the theoretical validity of this latter type of
equation for isotopic equilibria among gaseous
molecules, the partition function ratios (Eqn. 3)
were expanded in terms of asymptotic series in
powers of 11T. All terms in odd powers of 11 T
cancelled, so that an expression of the above form
was not obtained. The result in fact reaffirmed Eqns.
( lOa,b) by yet another independent method, but
did not provide any additional justification for the
type of power series mentioned above.
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FIG. I. Graph showing the variation of 1000 In a with

inverse temperature, for deuterium exchange between hy-
drogen gas and hydrogen fluoride. The individual points
(squares) were calculated by combining Eqns. (2, 3a, and
4), whereas the straight line represents the low-temperature
correlation represented by the indicated formula, which
was determined from Eqn, ( 13). As temperature increases,
the deviation increases between this straight line and the
calculated points, and a crossover would erroneously be
predicted from the linear approximation at 2220 K (i.e.,
1000/T = 0.45).

3

Of course, the range of Eqn. ( 14) can be extended
by inclusion of additional terms, for example

I ~a(UL - UL) - b(UiB + U~B)
n a = 24ab

+ a( uL - U~A) - b( ViB - U~B) + (15)
2880ab ....

Unfortunately, convergence is lost before the 11T
dependence is reached.

EXAMPLE CALCULATION

For purposes of illustration, it is useful to com-
pare the predictions of the high- and low-temper-
ature approximations given above with the more
exact values for the fractionation factors that, given
the availability of computers, are easily calculated
with Eqns. (3a,b). As an elementary example, con-
sider the exchange of deuterium between hydrogen
gas and hydrogen fluoride, represented by the ex-
change reaction

HD + HF = H2 + DF. (16)

15

60
j

T> 2000°C ,fJ<
50 -1 ~':-..0~
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FIG. 2. Graph showing the variation of 1000 In a with
the square of the inverse temperature, for deuterium ex-
change between hydrogen gas and hydrogen fluoride. At
extremely high temperatures, Eqn. ( 14), the straight line
represented by the indicated formula, agrees verywellwith
individual points (squares) calculated with Eqns. (2, 3a,
and 4), but the agreement deteriorates below 3000 K. Note
that the isotopic fractionation effect vanishes at extremely
high temperatures, even though the equilibrium constant
for the exchange reaction (Eqn. 16) approaches 'h.

The number of atoms exchanged in the reaction
(ab) equals 1 and the symmetry numbers (rr's) for
the HD, HF, and DF molecules are all equal to
unity, whereas that for H2 is equal to 2. The equi-
librium constant and the isotopic fractionation fac-
tor accordingly differ by the factor Koo = 1/2 (Eqn.
4a,b). RICHET et al. (1977) list the following values
for the wavenumbers (cm -I) of the pertinent di-
atomic molecules: WOF = 2998.192; WHF = 4138.32;
WHO = 3812.293; WHz = 4401.118. These values may
be converted to frequencies (sec -1) simply by mul-
tiplying by the speed of light. RICHET et al. (1977)
also calculated that K(ooC) = 1.77141 and K(loOOoC)

= 0.58021 for the above reaction. These values
compare well with the values of 1.78641 and
0.58164 that one can easily calculate with Eqns.
(2) and (3a), given above. The small discrepancy
arises from the inclusion of corrections for anhar-
monicity by RICHET et al. ( 1977); such corrections
are in fact well known to be significant for hydrogen
isotopes.

The smooth variation of 1000 In a with temper-
ature for these gases, as calculated with Eqns. (2,
3a, and 4), is shown by the individual points on
Figs. 1 and 2. At temperatures below 1000 K, In a
varies inversely with temperature, as expressed by
the straight line (Eqn, 13) having a slope of 396.62
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K and a y-intercept of -178.65. At progressively
higher temperatures, the deviation increases be-
tween this line and the fractionations calculated with
Eqns. (2, 3a, and 4). Were this straight line, rep-
resenting the low-temperature behavior, extrapo-
lated to high temperatures beyond its range of va-
lidity, a "crossover" (reversal in the sign of In a)
would erroneously be predicted at about 2220 K
(Fig. I).

At high temperatures (>3000 K), In a varies lin-
early with 11 T2 for these gases (Fig. 2). The nu-
merical value for the slope (284.68 K 2) of the high-
temperature correlation may be calculated from
Eqn. (14), and it is evident that the y-intercept,
representing the limiting fractionation at high tem-
perature, is zero (i.e. a = 1). Note on Fig. 2 that
at progressively lower temperatures, the deviation
increases between the points calculated with Eqns.
(2, 3a, and 4) and the high-temperature line given
by Eqn. (14).

CONCLUSIONS

For isotopic exchange reactions between gases at
low and very high temperatures, the logarithms of
the isotopic fractionation factors may be expressed
as straightforward linear relations of inverse tem-
perature or inverse temperature squared, respec-
tively. The slopes and intercepts of these equations
are explicitly related to the vibrational frequencies
of the molecules and the stoichiometric coefficients
of the exchange reaction, but (unlike K) are inde-
pendent of the symmetry numbers. Extrapolation
of these limiting equations beyond their range of
applicability leads to erroneous predictions. No
theoretical justification was found for the inclusion
of both II T and II T2 terms in the same fraction-
ation equation for isotopic equilibria among gaseous
molecules.
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