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Abstract 
The chemical composition of the continental crust is critically important for understanding its 
formation and evolution and, ultimately, understanding Earth differentiation. Here we provide a 
brief review of the chemical composition of the continental crust, with an emphasis on studies 
from China. The upper crustal composition reveals higher transition metal abundances compared 
to previous estimates that were based on results from the Canadian Shield. Inter-element 
correlations in clastic sedimentary rocks can be extended to many immobile as well as mobile 
elements. The significant correlations place constraints on the concentrations of the rarely 
analyzed elements (B, Be, Bi, Ge, In, Mo, Sb, Sn, Te, Tl, W) in the upper crust. Middle crustal 
compositional estimates based on sampling of amphibolite-facies rocks and seismic profiles 
yield a bulk composition with 62-69% SiO2. The eastern China middle crust composition is more 
evolved and shows slightly slower compressional velocity than that of global middle crust. While 
there is a general consensus that the global lower continental crust is mafic in composition, 
eastern China is a remarkable exception to this generality with an intermediate bulk lower crust 
composition. The total crust composition of eastern China is also more evolved than the global 
model and characterized by a significant negative Eu anomaly. Delamination of the lower crust 
and its underlying lithospheric mantle are suggested to have played an important role in driving 
the continental crust to an evolved composition, loss of the Archean keel, and in producing the 
large volumes of intraplate magmatism in the North China Craton during the Mesozoic. 
 
Keywords: Continental crust, chemical composition, seismic velocity, delamination, eastern 
China 
 
1. Introduction 
The composition of the continental crust is 
critically important for understanding its 
formation and evolution and ultimately, 
understanding Earth's differentiation, and for 
quantifying geodynamic processes within 
the Earth (e.g., Taylor and McLennan, 1995, 
2009; Rudnick, 1995; Gao et al., 1998a; 
Rundick and Gao, 2003; Hawkesworth and 
Kemp, 2006a, b). It also provides baselines 
for assessing geochemical anomalies in 
exploration of ore deposits and 

environmental and agriculture 
investigations. For these reasons, 
determining the chemical composition of the 
continental crust has been an aim of 
geochemists since the first analyses of rocks 
were undertaken (Clarke, 1889). 
 
The continental crust can be divided into 
upper, middle and lower layers and shows 
wide lithological and geochemical 
variations. The upper crust is readily 
accessible for direct sampling and its 
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composition is reasonably well established 
for the major elements and many lithophile 
trace elements. In comparison, the 
composition of the deep (middle and lower) 
crust is less well established due to its 
general inaccessibility. Here we provide a 
brief review of the chemical composition of 
the continental crust, with an emphasis on 
studies from China. For detailed reviews of 
composition of the continental crust in the 
global context see Rudnick and Gao (2003) 
and Taylor and McLennan (2009). 
 
2. The Upper Crust 
Two approaches have generally been used to 
determine the composition of the upper 
continental crust (ref. Rudnick and Gao, 
2003; Taylor and McLennan, 2009). One is 
to establish weighted averages of the 
compositions of rocks exposed at the surface 
by large-scale sampling campaigns. All 
major-element determinations of upper-crust 
composition rely upon this method. The 
other approach is to determine the average 
concentrations of insoluble elements in fine-
grained clastic sediments and sedimentary 
rocks (e.g., shale, mudstone, graywacke, 
siltstone, loess, and tillite) and use these to 
infer the average composition of their source 
regions. 
 
2.1 Weighted Averages of Exposed Crust 
The Canadian Shield represents the first area 
in which large-scale sampling of the crust 
was undertaken for both major and trace 
element analyses (Shaw et al., 1967, 1976, 
1986; Eade and Fahrig, 1971, 1973). More 
recently, two campaigns of systematic large-
scale sampling and rock analyses were 
undertaken in eastern China in the 1980's 
and 1990's for the purpose of studying the 
chemical composition of the continental 
crust. The first was carried out in the 
Qinling orogen and the adjacent regions of 
the North China Craton and Yangtze Craton. 

The sampling covered an area of 153,200 
km2 and comprised over 4500 individual 
rock samples that represented all of the Late 
Archean to Neogene stratigraphic units, the 
2/3 of the exposed granitoids, as well as all 
of the major mafic-ultramafic intrusions in 
the study area. These individual rocks were 
analyzed for thirteen major and thirty trace 
and rare earth elements. The results were 
used, in conjunction with seismic velocities 
of the deep crust and surface heat flow, to 
estimate the composition of the upper, deep 
and total crust of the Qingling region (Gao 
et al., 1992; Zhang et al., 1994). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A second round of large-scale sampling was 
conducted over most of eastern China, 
covering a total area of ca 3,300,000 km2 
(Fig. 1) (Yan et al., 1997; Yan and Chi, 
1997; Gao et al., 1998b; Zhang et al., 2002). 
A total of 28,253 individual rocks were 
sampled, from which 2,718 composite 
samples were prepared based on age, 
lithology and tectonic units. Between sixty-
three to seventy-six major and trace 
elements were analyzed by a variety of 
methods, including elements that are rarely 
analyzed (e.g., Ag, As, Bi, Br, Cd, Cl, F, Ge, 
Hg, I, In, Mo, PGE, Te, Se, W) (Yan et al., 
1997; Yan and Chi, 1997; Gao et al., 1998b; 
Zhang et al., 2002). 

 
Figure 1 
(see appendix for larger image) 
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These studies revealed higher transition 
metal abundances of the upper crust 
compared to previous estimates that were 
based on results from the Canadian Shield 
studies (Shaw et al., 1967, 1976, 1986; Eade 
and Fahrig, 1971, 1973; Taylor and 
McLennan, 1985; Wedepohl, 1995). A 
higher transition metal content of the upper 
crust has been supported by subsequent 
studies of fine-grained clastic sedimentary 
rocks (Condie, 1993; Plank and Langmuir, 
1998; McLennan, 2001; Hu and Gao, 2008; 
Taylor and McLennan, 2009). The 
discrepancies between the Canadian Shield 
and eastern China studies were ascribed to 
differential erosion. The present-day surface 
of the Canadian Shield is dominated by 
amphibolite-facies granitoid gneisses, which 
are more typical of middle crust than upper 
crust. The uppermost crust of Archean 
regions typically contains more mafic 
volcanic rocks (Gao et al., 1998b). By 
contrast, unmetamorphosed to greenschist-
facies rocks are well preserved in eastern 
China. 
 
The influence of erosion on the upper crust 
composition was also demonstrated by 
Condie (1993), who added a 10 km thick 
layer of upper crust in Precambrian areas 
and a 5 km thick layer of upper crust in 
Phanerozoic areas to the present upper crust 
layer. This restoration model for the upper 
continental crust composition shows a 
remarkably good agreement with the eastern 
China upper crust composition in terms of 
Nb, Rb, Th, Zr, Co, Sc, and V, as well as 
K2O concentrations. Although the Cr and Ni 
abundances of the restoration model are 
significantly greater than the eastern China 
estimates, the difference is small compared 
to estimates based on the Canadian Shield. 
We conclude that eastern China surface 
samples are a good representation of the 

average upper continental crust (Gao et al., 
1992, 1998b). 
 
Another important observation from eastern 
China is that various thicknesses of 
sedimentary cover, including carbonate, are 
an important component of the upper 
continental crust. Because carbonate and 
silicate rocks vary greatly in their chemical 
compositions and since the sedimentary 
cover in eastern China contains a 
significantly higher carbonate proportion 
with a carbonate/(pelite+sandstone) ratio of 
0.31-2.23 compared to the global ratio of 
0.18 (Taylor and McLennan, 1985), the 
upper crust compositions with and without 
carbonate are distinct in major elements 
(e.g., 58.5 vs 65.5% for SiO2 and 7.41 vs 
3.31 for CaO) (Gao et al., 1998b). However, 
because carbonates have low abundances of 
trace elements, excepting Sr, the two 
estimates of the upper crust do not vary in 
relative trace element abundances (Yan et 
al., 1997; Gao et al., 1998b). The major 
element compositions without carbonate are 
also similar to previous estimates (Gao et 
al., 1998b). 
 
In addition, trace elements associated with 
mineralization (e.g., B, Cl, Se, As, Bi, Pd, 
W, Th, Cs, Ta, Tl, Hg, Au, and Pb) show 
considerable inter-unit variability (by a 
factor of 2-5) in the upper crust (Gao et al., 
1998b). 
 
2.2 Fine-Grained Sedimentary Rocks 
Estimates of the upper crustal composition 
from fine-grained clastic sedimentary rocks 
were applied by Taylor and McLennan 
(1985) to trace elements that are immobile 
during water-rock interaction and are not 
hosted in accessory minerals and, thus, are 
little fractioned during sedimentary 
processing and diagenesis. Such elements 
include REE, Y, Th, and Sc. The more 
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mobile elements, such as K, U and Rb, can 
be estimated from assumed Th/U, K/U and 
K/Rb ratios (Taylor and McLennan, 1985). 
The fine-grained sediment approach has 
more recently been extended to elements 
such as Nb, Ta, Cs and transition metals (Cr, 
Ni, V, Co and Ti) (McDonough et al., 1992; 
Plank and Langmuir, 1998; Barth et al., 
2000; McLennan, 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In a recent study, Hu and Gao (2008) 
analyzed 48 trace elements by ICP-MS 
(including the rarely analyzed elements As, 
B, Be, Bi, Cd, Ge, In, Mo, Sb, Sn, Te, Tl, 
W) in well-characterized upper crustal 
samples (shales, pelites, loess, graywackes, 
granitoids and their composites) from 
Australia, China, Europe, New Zealand and 
North American. The results reveal that 
inter-element correlations in clastic 
sedimentary rocks can be extended to many 
immobile as well as mobile elements (e.g., 
Ga-In, Th-Sn, Rb-Tl, Th-Tl, Rb-Be, Th-Be, 
Rb-Ge, Rb-W, Be-Bi, W-Bi, In-Li, B-Te, 
Fe-transition trace metals) (Fig. 2). The 
significant (r2>0.6) correlations observed in 
clastic sediments and sedimentary rocks 
provide narrowly constrained upper 
continental crust elemental ratios, which can 
be used with abundances for certain key 
elements to place constraints on the 
concentrations of these rarely analyzed 

elements in the upper crust. Using the well-
established upper crustal abundances of La 
(31 ppm), Th (10.5 ppm), Al2O3 (15.40%), 
K2O (2.80%) and Fe2O3 (5.92%), these 
correlations lead to revised upper crustal 
abundances for B=47 ppm, Li=41 ppm, 
Cr=73 ppm, Ni=34 ppm, Sb=0.075, 
Te=0.027 ppm, W=1.4 ppm. Tl=0.53 ppm 
and Bi=0.23 ppm. No significant 
correlations exist between Mo and Cd and 
other elements in the clastic sediments and 
sedimentary rocks, probably due to their 
enrichment in organic carbon. If we assume 
that these two incompatible elements behave 
more or less like REE and Th, their 
abundances can be calculated by assuming 
the upper continental crust consists of 65% 
granitoid rocks plus 35% clastic sedimentary 
rocks. The validity of this bulk average 
approach for incompatible elements is 
supported by the similarity of SiO2, Al2O3, 
La and Th abundances calculated in this way 
with their upper crustal abundances given in 
Rudnick and Gao (2003). The upper crustal 
abundances thus obtained are Mo=0.6 ppm 
and Cd=0.06 ppm. The data also suggest a 
~20% increase of the Tm, Yb and Lu 
abundances reported in Rudnick and Gao 
(2003). 
 
In summary, studies of surface samples from 
eastern China and clastic sediments establish 
significantly higher upper crustal 
abundances of transition metals compared to 
those based on surface samples from the 
Canadian Shield. The upper crustal 
compositions of the major elements and a 
majority of trace elements, as well as some 
key elemental ratios are well established. 
Such estimates can form basis of mass 
balance calculations for the Earth and 
provide geodynamic insights (e.g., Rudnick 
et al., 2000). However, the upper crustal 
abundances of some elements, notably 

 
Figure 2 
(see appendix for larger image) 
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platinum group elements, noble gases and 
the halogens are still highly uncertain. 
 
3. The Deep Crust 
Major uncertainties in the composition of 
the continental crust lie in the deep 
continental crust and particularly the lower 
crust, as it is far less accessible than the 
upper crust. Four approaches have been used 
to infer its composition (ref. Rudnick and 
Gao, 2003): (1) analyses of high-grade 
metamorphic (amphibolite or granulite 
facies) terrains and exposed crustal cross-
sections in particular; (2) studies of 
granulite-facies xenoliths entrained in fast-
rising magmas; (3) correlation of measured 
seismic velocities of deep crustal rocks with 
seismic profiles of the crust; and (4) surface 
heat flow measurements. 
 
Studies of exposed crustal cross-sections 
and xenoliths indicate that, although 
exceptions exist, the middle crust is 
dominated by rocks metamorphosed at 
amphibolite-facies to lower granulite facies, 
while the lower crust consists mainly of 
granulite-facies rocks (Rudnick and Gao, 
2003 and references therein). Exposed 
amphibolite- to granulite-facies terrains and 
middle crustal cross-sections show that, 
although they contain a wide variety of 
lithologies, including metasedimentary 
rocks, they are dominated by igneous and 
metamorphic rocks of the diorite-tonalite-
trondhjemite-granodiorite (DTTG) and 
granite suites. This is true not only for 
Precambrian shields, but also for 
Phanerozoic crust and continental arcs. Such 
rock associations are consistent with the 
average middle crustal P-wave velocities of 
6.4-6.5 km s-1 seen in all the tectonic settings 
except for active rifts and some intra-
oceanic island arcs, which have higher 
average velocities suggesting a more mafic 
composition (Rudnick and Fountain, 1995). 

Middle crust compositional estimates based 
on sampling of amphibolite-facies rocks and 
seismic profiles yield a bulk composition 
with 62-69% SiO2. Trace element 
composition of the middle crust is poorly 
constrained, as systematic trace element 
studies of amphibolite-facies rocks are few. 
Nevertheless, the estimates of Rudnick and 
Fountain (1995) based on lithologies derived 
from seismic velocities and Gao et al. 
(1998b) based on eastern China surface 
sampling show a broadly similar 
composition in both major and trace 
elements, although the eastern China middle 
crust composition is more evolved, having 
higher SiO2, K2O, Ba, Li, Zr, and LREE and 
LaN/YbN and lower total FeO, Sc, V, Cr 
and Co with a significant negative Eu 
anomaly. These differences are expected 
based on the slightly higher compressional 
velocity of Rudnick and Fountain's global 
middle crust compared to that of eastern 
China (6.6 vs. 6.4 km s-1: Gao et al., 1998a, 
b). The consistency is surprising, 
considering that the two estimates are based 
on different sample sets and different 
approaches, one global and the other 
regional (Rudnick and Gao, 2003).  
 
Like the middle crust, the lower crust also 
contains a wide variety of lithologies, as 
revealed by studies of granulite xenoliths, 
exposed high-pressure granulite terranes and 
crustal cross sections. Nevertheless, mafic 
rocks appear to dominate in the lower crust 
based on the relatively high seismic 
velocities, which are faster than 6.9 km s-1 
(mostly ≥7.0 km s-1) for various tectonic 
units (Rudnick and Fountain, 1995). 
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While there is a general consensus that the 
global lower continental crust is mafic in 
composition (ref. Rudnick and Fountain, 
1995; Christensen and Mooney, 1995), 
Eastern China is a remarkable exception to 
this generality. Studies of exposed lower 
crustal cross-section and lower crustal 
granulite-facies xenoliths in eastern China 
indicate a bimodal lithological distribution 
in the lower crust, with felsic rocks being an 
important constituent, as exemplified by the 

Hannuoba granulite xenoliths, which have 
an average SiO2 of 56% (Kern et al., 1995; 
Liu et al., 2001). This is unlike the 
worldwide compilations of lower crustal 
xenoliths, which are predominately mafic 
(Rudnick and Presper, 1990; Rudnick and 
Fountain, 1995) with an average SiO2 of 
51.5% (Fig. 3). This conclusion is supported 
by results of seismic profiling, which 
indicate a distinct two-layered structure to 
the lower crust for all of eastern China, 
except the Qingling orogen (Fig. 4). The 
upper lower crust has a mean velocity of 6.7 
km s-1, suggesting an evolved composition; 
only the lowermost crust has a mean 
velocity that is typical of mafic rocks 
(average velocity = 7.1 km s-1) and is 
comparable to the global lower crust. The 
bulk lower crust of eastern China has a mean 
P-wave velocity of 6.82 km s-1 that is slower 
than the global average by 0.2-0.4 km s-1, 
and is consistent with an intermediate bulk 
composition (Gao et al., 1998a, b). The 
slower velocity of the lower crust of eastern 
China is reinforced by recent compilations 
of seismic profiling in China (Li et al., 
2006). We conclude that the evolved lower 
crust composition of eastern China is well 
established and is a remarkable feature 
exceptional to the global continental crust. 
 
4. The total crust composition and its 
geodynamic implications 
There is a general consensus that the bulk 
composition of the continental crust is 
andesitic. All estimates of the crust 
composition, including the pioneering work 
of Clarke (1889), have a total crustal SiO2 
that falls between 57.1-64.5% (Rudnick and 
Gao, 2003), regardless of the approaches 
and data sets that have been employed to 
derive these estimates. Moreover, all 
estimates show a continental crust that is 
characterized by enrichments in large-ion 
lithophile elements (e.g., Cs, Rb, Ba and, in 

 
Figure 3 
(see appendix for larger image) 
 

 
Figure 4 
(see appendix for larger image) 
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particular, Pb) and depletions in high-field 
strength elements (Nb, Ta, Ti). These 
features are therefore considered robust and 
can be used to understand the formation and 
evolution of the continental crust. 
 
The continental crust grows primarily by an 
igneous flux from the mantle, which in most 
cases should be basaltic. The demonstrably 
non-basaltic composition of the continental 
crust requires some form of crustal recycling 
through delamination, weathering and/or 
subduction (Rudnick, 1995). 
 
Europium balance or imbalance in the 
continental crust may be useful for 
understanding the processes by which the 
crust evolved (e.g., Gao et al., 1998a; 
Hawkesworth and Kemp, 2006b). Mantle-
derived additions to the crust would 
normally have no Eu anomaly. Intracrustal 
differentiation by granitic magmatism has 
led to a prominent negative Eu anomaly in 
the granitic upper crust (Eu/Eu*=0.72; 
Rudnick and Gao, 2003), and should 
produce a restitic lower crust with a 
complementary positive Eu anomaly (Taylor 
and McLennan, 1985, 2009). However, if 
delamination of the dense mafic lower crust 
could occur, and if this crust contained 
cumulate or residual plagioclase, the total 
crust after delamination would evolve 
toward a felsic composition with a negative 
Eu anomaly. The total crust composition 
estimates of Rudnick and Gao (2003) has a 
weak negative Eu anomaly (Eu/Eu*=0.93), 
which would accommodate some removal of 
plagioclase cumulates/restites, although 
given the uncertainties, there is no need to 
call upon plagioclase removal from the 
lower crust. 

 
Figure 5 
(see appendix for larger image) 
 
In contrast to the global average lower crust, 
the continental crust in eastern China has a 
pronounced negative Eu anomaly 
(Eu/Eu*=0.80) (Gao et al., 1998a, b). The 
upper and middle crusts of eastern China 
have Eu/Eu* of 0.73 and 0.78, respectively. 
Weighted by thickness, the upper plus 
middle crust as a whole has an average 
Eu/Eu* of 0.75 (Fig. 5). The Hannuoba 
mafic and mafic to felsic granulite xenoliths 
have almost identical Eu/Eu* of 1.28 and 
1.30, respectively. If the eastern China lower 
crust is assumed to be represented by the 
average Hannuoba granulite xenoliths, the 
resultant total crust has Eu/Eu* of 0.89 (Fig. 
5). This magnitude of Eu anomaly is 
insufficient to compensate for the negative 
Eu anomaly of the upper and middle crust so 
as to produce no Eu anomaly in the total 
crust. The model lower crust is required to 
have Eu/Eu* of 1.73 to make a balance, 
which is far greater than the average 
worldwide mafic (Eu/Eu*=1.24) and mafic 
to felsic granulite xenoliths (Eu/Eu*=1.14) 
(Fig. 5). Delamination of the lower crust 
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plus underlying lithospheric mantle has been 
suggested to have occurred in eastern China 
based on studies of Mesozoic high-Mg 
adakitic magmas, picritic and basaltic lavas 
and entrained eclogitic xenoliths in the 
North China Craton (Gao et al., 2004, 2008; 
Xu et al., 2006). Although other models may 
also explain the andesitic composition of the 
continental crust (Rudnick and Gao, 2003; 
Arculus, 2006; Davidson and Arculus, 
2006), we conclude that delamination of the 
deep lithosphere may have played an 
important role in driving the continental 
crust to an evolved composition, loss of the 
Archean keel, and in producing the large 
volumes of intraplate magmatism in the 
North China Craton during the Mesozoic 
(Gao et al., 2004, 2008; Xu et al., 2006). 
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Appendix – Figure 1 
 

 
Figure 1. Generalized tectonic map of China showing distributions of seismic refraction profiles 
(blue lines) and the area of geochemical sampling (green line enclosed area) (Yan and Chi, 2007; 
Gao et al., 1998b). NC = North China Craton; YC = Yangtze Craton; SC = South China Orogen. 
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Appendix – Figure 2 
 

 
Figure 2. Examples of correlations between elements in various fine-grained clastic sedimentary 
rocks and loess (Hu and Gao, 2008): (a) Th-Sn, (b)Th-Be, (c) Rb-Ge, and (d) Fe2O3-Zn. Lines 
represent linear fit to data. r is correlation coefficient. Superimposed are upper crustal 
composition estimates of Taylor and McLennan (1985, 2009), Shaw et al. (1986), Gao et al. 
(1998b), Rudnick and Gao (2003), and Hu and Gao (2008). 
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Appendix – Figure 3 
 

 
Figure 3. Comparison of SiO2 contents of granulite xenoliths from Hannuoba of the North China 
Craton (a) (Zhang et al., 1998; Liu et al., 2001) and worldwide compilations (b) (Rudnick, 
unpubl.). Numbers indicate the average SiO2 content, one standard deviation and number of 
samples (N). 
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Appendix – Figure 4 
 

 
Figure 4. Average crustal structure for different tectonic units in China. All velocities are 
reported at 600 MPa and room temperature (Gao et al., 1998a). The underlined number below 
each column indicates average Vp for the total crust. 
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Appendix – Figure 5 
 

 
Figure 5. Eu anomalies of the continental crust in eastern China (upper panel) and model crust 
(lower panel). UC and MC indicate the upper and middle crusts, respectively 
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